
URL: www.math.niu.edu/~dattab

E−mail: dattab@math.niu.edu

DeKalb, IL. 60115 USA

Northern Illinois University
Department of Mathematical Sciences

FOR CONTROL SYSTEMS

SOFTWARE

AND

STATE−OF−THE ART COMPUTATIONAL METHODS
ON

WORKSHOP

Presenter: Biswa Nath Datta

A Reference Book

My Lectures are based on the book

“Numerical Methods for Linear Control
Systems, Design and Analysis”

by

B.N. Datta
Elsevier Academic Press, 2003.

Information on the book is available at the
website:

http : //www.math.niu.edu/ ∼ dattab

2

Softwares Associated with the Book

• MATCONTROL (A MATLAB-based software imple-
menting most algorithms in the book).

URL: www.math.niu.edu/ ∼ dattab

• Control Systems Professional - Advanced
Numerical Methods (MATHEMATICA - based
Numerical Control Software).

URL: www.math.niu.edu/ ∼ dattab

3

Computational Strategy
for Control Problems

4

A Strategy for Solving Computational
Control Problems

Step 1. Reduce the problem to a more manageable one by
transforming the system matrices (A, B,C) to some
“Condensed forms”.

Step 2. Solve the reduced problem.

Step 3. Recover the solution of the original problem from the
solution of the reduced problem.

5

Condensed Forms

Widely used condensed forms in control theory text books
are:

• Companion Forms

• Jordon Canonical Forms

Unfortunately, none of these forms can be achieved in
a numerically effective way.

• The transforming matrices can be highly
unstable.

6

Transformation of a Matrix A to a
Companion Form

Stage I. Transform A to an upper Hessenberg matrix H.

A
P−→ PTAP = H (P − Orthogonal)

• Numerically Stable.

Householder’s or Givens Method can be used.

Stage II. Reduce H further to a companion matrix C.

H
X−→ X−1HX = C (X − Nonorthogonal)

• Unstable.

The transforming matrix is highly ill-conditioned,
if H has small subdiagonal entries.

7

• Ill-Conditioning: X is ill-conditioned if

Cond (X) = ||X−1|| ||X||
is too large.

• Orthogonal matrices are well-conditioned

(Condition Number = 1)

8

Suggestion: Avoid these forms in numerical
computations

The condensed forms of choice are

• Hessenberg Forms

• Real Schur Forms

• Hessenberg-triangular Forms

• Controller and Observer Hessenberg Form.

These forms can be achieved using orthogonal
transformations which are very well-conditioned.

9

• Hessenberg Forms




∗ ∗ 0
... . . .

∗ ... ∗
∗ ∗ · · · ∗







∗ · · · ∗ ∗
∗ · · · ∗ ∗

.
0 ∗ ∗




Lower Hessenberg Upper Hessenberg

• Companion Matrices - special Hessenberg matrices


0 1 0 0
0 0 1 0
0 0 0 1
× × × ×







0 0 0 ×
1 0 0 ×
0 1 0 ×
0 0 1 ×




Lower Companion Upper Companion

10

• Real Schur Form: A Quasi-triangular matrix
with either 1× 1 or 2× 2 block matrices on the diag-
onal.

Example

H =




× × × × ×
0 × × × ×
0 × × × ×
0 × × × ×
0 0 0 0 ×


 .

11

• Real Schur Form by QR Iteration

Two-stage procedure:

Stage I:A Householder
Direct H

Stage II:H QR Iteration
Iterative Real Schur Form

H =




0.2190 −0.0756 0.6787 −0.6391
−0.9615 0.9032 −0.4571 0.8804

0 −0.3822 0.4526 −0.0641
0 0 −0.1069 −0.0252


 .

12

Iteration h21 h32 h43

1 0.3860 -0.5084 -0.0084
2 -0.0672 -0.3773 0.0001
3 0.0089 -0.3673 0
4 -0.0011 -0.3590 0
5 0.0001 -0.3905 0
· · ·

13

The computed RSF is

H =




1.4095 0.7632 -0.1996 0.8394
0.0001 0.1922 0.5792 0.0494

0 -0.3905 0.0243 -0.4089
0 0 0 -0.0763


 .

The eigenvalues of

[
0.1922 0.5792
−0.3905 0.0243

]
are 0.1082 ± 0.4681j.

MATLAB Commands

• Hessenberg: [P,H] = hess(A)
PTAP = H

• Real Schur Form: [U, T] = Schur (A)
UTAU = T.

• Efficiency and Numerical Stability

Transformations to Hessenberg

14

Two Important Properties of Matrix
Algorithms

• Efficiency – Measured by flop-count
flop – floating point operation (+,−, ∗,÷).

Computations involving n × n matrices are

efficient if it does not require more than O(n3)
flops.

• Numerical Stability– If the computed

solution is the exact solution of a nearby problem.

Example The QR iteration algorithm for finding
the RSF is numerically stable:

QT (A + E)Q = T̂ (Computed RSF)

where
||E||F ≤ cµ||A||F (small)

15

MODELLING
AND

SYSTEM RESPONSES
(Chapter 5)

16

State-Space Representations of Control
Systems

Linear time-invariant continuous-time

ẋ(t) = Ax(t) + Bu(t), x(t0) = x0,
y(t) = Cx(t) + Du(t).

• x(t) is the n-dimensional state vector

• u(t) is the m-dimensional input
(control) vector (m ≤ n).

• y(t) is the r-dimensional
output vector.

The matrices A,B, C, and D are time-invariant ma-
trices, respectively, of dimensions n × n, n × m, r × n,
and r × m.

17

Discrete-time System

xk+1 = Axk + Buk

yk = Cxk + Duk

• These lectures will be confined mostly to continuous-
time systems only.

• The discrete-time systems will be discussed only oc-
cassionally.

18

OUTPUTLinear System

STATE

INPUT u(t)

x(t)

y(t)

Representation of a Continuous-time
State-Space Model.

19

Solutions of a Continuous-Time System:
System Responses

Theorem. (Continuous-Time State-space
Solution)

• x(t) = eA(t−t0)x0 +

∫ t

t0

eA(t−s)Bu(s)ds

• y(t) = CeA(t−t0)x0 +

∫ t

t0

CeA(t−s)Bu(s)ds + Du(t).

Remarks: (i) If u(t) = 0, then

x(t) = eA(t−t1)x(t1)

for every t ≥ t0 and any t1 ≥ t0.

20

Computational Methods for Computing the
Exponential Matrix

• The Eigenvalue-Eigenvector Method
• Padé Methods
• ODE Methods
• Matrix Decomposition Methods

21

The Eigenvalue-Eigenvector Method

A difficulty with this approach arises when A
has some nearly equal eigenvalues. This can be
seen from the following theorem (Moler and Van Loan
(1978)).

Theorem. Let X−1AX = diag(λ1, λ2, · · · , λn), where
λ1, λ2, · · · , λn are the eigenvalues of A. Then

‖fl(eAt) − eAt‖2 ≤ nµeρ(A)tCond2(X),

where ρ(A) = max |λi| is the spectral radius of A.
• If eigenvectors of A are almost lineary independent,
then eAt can not be computed accurately.

22

The Padé Approximation Method

The (p, q) Padé approximation to eA :

Rpq(A) = [Dpq(A)]−1 Npq(A),

where

Dpq(A) =

q∑
j=0

(p + q − j)!q!

(p + q)!j!(q − j)!
(−A)j

and

Npq(A) =

p∑
j=0

(p + q − j)!p!

(p + q)!j!(p − j)!
Aj.

• Round-off errors due to catastrophic
cancellation is a major concern for this method.

• It is less when ||A|| is not too large and the diagonal
approximants (p = q) are used.

23

Padé Approximation to eA using Scaling and
Squaring (Algorithm 5.3.1)

Input: A ∈ Rn×n, δ > 0, an error-tolerance.

Output: F = eA+E with ‖E‖∞ ≤ δ‖A‖∞.

Step 1. Choose j such that ‖A‖∞ ≤ 2j−1. Set A ≡
A/2j.

Step 2. Find p such that p is the smallest
non-negative integer satisfying(

8

22p

)
(p!)2

(2p)!(2p + 1)!
≤ δ.

Step 3. Set D ≡ I, N ≡ I, Y ≡ I, c = 1.

24

Step 4. For k = 1, 2, · · · , p do

c ≡ c(p − k + 1)/[(2p − k + 1)k]

Y ≡ AY, N ≡ N + cY,D = D + (−1)kcY.

End

Step 5. Solve for F : DF = N .

Step 6. For k = 1, 2, · · · j do
F ≡ F 2.

End

25

Flop-count ·The algorithm requires about 2(p+j+1
3)n

3

flops.

Numerical Stability Property.

• eA may grow before it decays during the
squaring process known as “hump” phenomenon.

• MATLAB Note: The MATLAB function expm
computes the exponential of a matrix A.

• MATCONTROL Note: Algorithm 5.3.1 has been
implemented in MATCONTROL function: expm-
pade.

26

Computing eA via the Real Schur Form.

• PTAP = R, a real Schur form

• eA = PeRPT .

27

Real Schur Form

R =




R11 R12 · · · R1k

0 R22 · · · R2k

...

0 0 · · · Rkk




• Each Rii is either a scalar or a 2 × 2 matrix

• The QR iteration algorithm is used to compute P and
R.

• MATLAB Command: [U, T] = schur (A)

28

The Schur Algorithm for eA (Algorithm 5.3.2).

Input: A ∈ Rn×n

Output: eA.
Step 1. Transform A to R an upper triangular ma-
trix using the QR iteration algorithm:

PTAP = R.

(Note that when the eigenvalues of A are all real, the real
Schur form is upper triangular).
Step 2. Compute eR = G = (gij) :
For i = 1, · · · , n do

gii = erii

End
For k = 1, 2 · · · , n − 1 do

For i = 1, 2, · · · , n − k do

Set j = i + k

gij =
1

(rii − rjj)


rij(gii − gjj) +

j−1∑
p=i+1

(giprpj − ripgpj)


 .

End
End

29

Step 3. Compute eA = PeRPT

Flop-count. Computation of eR in Step 2 requires

about
2n3

3
flops.

MATCONTROL Note: The Algorithm has been imple-
mented in MATCONTROL function expmschr.

30

Comparison of Different Methods for Comput-
ing the Exponential Matrix

• The Padé approximation method (with scaling
and squaring) and the Schur method should, in gen-
eral, be attractive from computational view points.

• Avoid Taylor Series methods and companion or Jordan
Canonical methods.

• Use ODE Method when A is large and sparse

31

Steady-State Response in the Frequency
Domain

y(t) = C(jωI − A)−1Bvejωt + Dvejωt.

Definition. Frequency Response Matrix:

G(jω) = C(jωI − A)−1B + D

32

Computing the Frequency Response Matrix

Assume D = 0.

The computation of (jωI−A)−1B is equivalent to solving
m systems:

(jωI − A)X = B.

A usual scheme for computing the frequency response
matrix is :

Step 1. Solve the m systems for m columns x1, x2, . . . , xm
of X :

(jωI − A)xi = bi, i = 1, 2, . . . ,m

where bi is the i-th column of B.

Step 2. Compute CX .

Remark: Too Expensive - for each ω, Approximately
2n3 + 2mn2 + 2mnr flops.

33

A Hessenberg Method

• PAPT = H, Upper Hessenberg
• G(jω) = C(jωI − A)−1B

= C(jωI − PHPT)−1B
= C(P (jωI − H)PT)−1B
= CP (jωI − H)−1PTB.


∗ · · · ∗ ∗
∗ · · · ∗ ∗

.
0 ∗ ∗




• Householder or Givens Methos via orthogonal similar-
ity.

MATLABCommand : [P,H] = hess (A).

34

A Hessenberg Algorithm for the Frequency Re-
sponse Matrix (Algorithm 5.5.1)

Input. A–The n × n state matrix
ω–Frequency, a real number
B–The n × m input matrix
C–The r × n output matrix.

Output. The Frequency Response Matrix

G(jω) = C(jωI − A)−1B.

Step 1. Transform A to an upper Hessenberg matrix H :
PTAP = H.

Step 2. Compute B′ = PTB
and C ′ = CP, using the factored form of P .

35

Step 3. Solve the m Hessenberg systems:

(jωI − H)xi = b′i, i = 1, . . . , m,

where b′i is the i-th column of B′.

Step 4. Compute C ′X . �

• Hessenberg systems require O(n2) flops to solve using
Gaussian elimation with partial pivoting.

36

Comparison of the Efficciency

For N values of ω

• Hessenberg Method:

10

3
n3+4(n−2)(m+r)n real +[2mn2+2rnm]N

complex flops

• Non-Hessenberg Method:

[2n3 + 2mn2 + +2mnr]N complex flops

37

Numerical Stability: If the data is well-conditioned,
then the frequency response of the computed Hessenberg
form is (C + 4C)(jωI − A −4A)−1(B + 4B), where
4A,4B, and 4C are small. Thus, the Hessenberg-
method is stable.

MATCONTROL Note: Algorithm 5.5.1 has been
implemented in freqresch.

38

CONTROLLABILITY,
OBSERVABILITY,

and
DISTANCE TO CONTROLLABILITY

(Chapter 6)

39

Theoretical Criteria of Controllability

Let A ∈ Rn×n and B ∈ Rn×m(m ≤ n).

• The n × nm matrix

CM = (B,AB, A2B, · · · , An−1B)

has full rank n

• The matrix (Controllability Grammian)

WC =

∫ t1

0

eAtBBTeAT tdt

is nonsingular for any t1 > 0.

• If (λ, x) is an eigenpair of AT , i.e., xTA = λxT , then
xTB 6= 0. (Eigenvector Criterion)

• Rank (A − λI, B) = n for every eigenvalue λ of A.
(Eigenvalue Criterion)

• The eigenvalues of A − BK can be arbitrarily as-
signed (assuming that the complex eigenvalues occur
in conjugate pairs) by a suitable choice of K. (Pole-
placement Criterion)

40

Numerical Stability

• Computational algorithms based on most theoretical
criteria are numerically unstable.

41

• SVD: Am×n = UΣV T (m ≥ n)

Um×m −−− orthogonal

Vn×n −−− orthogonal

Σm×n = diag (σ1, . . . , σn)

σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0 (singular values).

• σ1 = σmax = Largest singular value

• σn = σmin = Smallest singular value

• MATLAB Program: [U, S, V] = svd (A)

• Rank = Number of nonzero singular values

• Numerical Rank = Number of nonzero sigular values
above a threshold.

42

Example.

A =




1

2−1

. . .

2−9




10×10

, B =




1

1

1

. . .

1




• The pair (A, B) is controllable.

• The controllability matrix

CAB = (B,AB, . . . , A9B)

has three small singular values

0.613 × 10−12, 0.364 × 10−9, 0.712 × 10−7

• Numerical rank is less than 10.

• Conclusion: In floating point arithmetic the pair
(A, B) is not controllable.

43

A Numerically Effective Test

• PAPT = H, A Block Upper Hessenberg Matrix

• B̄ ≡ PB =


 B1

0


 .

H ≡




H11 H12 H13 · · · H1k

H21 H22 H23 · · · H2k

0

0 · · · 0 Hk,k−1 Hkk


 , B̄ ≡

(
B1

0

)
,

The pair (H,B) is called Controller-Hessenberg pair.

44

Test of Controllability

The pair (A, B) is controllable if Hk,k−1 has full rank.
It is uncontrollable if Hk,k−1 = 0.
(Staircase Algorithm: Algorithm 6.2.1)

MATCONTROL Function: cntrlhs

45

Example. (An uncontrollable pair).

A =




1 1 1

1 1 1

0 0 1


 , B =




1 1

1 1

1 1


 .

• The Controller-Hessenberg Pair:

H =




2.3333 −0.4714 0

0.9428 0.6667 0

0 0 0


 ,

B̄ =




−1.7321 −1.7321

0 0

0 0


 .

Clearly the pair (A, B) is not controllable.

46

Controllability Test in the Single-Input Case

PAPT = H =




h11 h12 · · · · · · h1n

h21 h22 · · · · · · h2n

0 h32
. . . · · · h3n

...
0 · · · 0 hn,n−1 hnn


 ,

P b = b̄ =




b1

0
...

0


 .

• (A, B) Controllable ⇐⇒ H is unreduced and b1 6= 0.

• Unreduced ≡ Subdiagonal entries are different from
zero.

47

A Numerically Effective Test for
Observability
(Section 6.8)

• Reduction to Observer-Hessenberg Pair:

H = PAPT =




H11 H12 · · · H1k

H21
.

.

0 Hk,k−1 Hkk


 ,

C̄ = CPT = (0, C1).

• The pair (A,C) is observable if H is block
unreduced (that is, all the subdiagonal blocks
have full rank) and the matrix C1 has full
rank.

Flop-Count. The observer-Hessenberg form requires
roughly 6n3 + 2n2r flops.

MATCONTROL Note: MATCONTROL function
obserhs can be used to obtain the reduction to observer-
Hessenberg form.

48

Distance to Uncontrollability

• An Obviously Controllable Pair

A =




−1 −1 · · · · −1 −1

1 · −1

1 · −1

· · ·
· · ·
· · ·

0 · · −1

1 1




, B =




1

0

·
·
·
0




.

• Add (−21−n,−21−n, . . . ,−21−n) to the last row of
(B,A).

The result is an uncontrollable pair.

• Conclusion: The controllable pair (A, B) is close
to an uncontrollable pair.

49

A Measure of the Distance to
Uncontrollability

Definiton of the distance to uncontrollability,
µ(A, B) :

• µ(A, B) ≡ min {‖∆A, ∆B‖2 such that the system

defined by (A + ∆A, B + ∆B) is uncontrollable}.

• Smallness of µ(A, B) → closeness to uncontrolla-
bilty

Perturbations are assumed to be over the field of com-
plex numbers.

50

Distance to Uncontrollability in terms of
Singular Values.

σn = the smallest
singular value

µ(A, B) =
mins∈C σn(sI − A, B)

• If µ(A, B) is small, then the original pair (A, B) is
close to an uncontrollable pair.

• Two Algorithms: Newton’s Method and the Wicks
De Carlo Method

51

The Wicks-DeCarlo Method for Distance

to Uncontrollability

Minimizing the above function is equivalent to
minimizing

µ(A, B) = min
u∈Cn

||(u∗A(I − uu∗)u∗B||,
subject to u∗u = 1.
Definition. Distance measure d1(A,B)

[d1(A, B)]2 = ||[e∗n(A(I − ene
∗
n) B)]||22

=
n−1∑
j=1

|anj|2 +
m∑

j=1

|bnj|2.

Then

µ(A, B) = min
U∈Cn×n
U∗U=I

d1(U
∗AU,U ∗B)

52

Idea of an Algorithm

Construct a set of matrices {Ak, Bk} from (A, B) such
that

• Ak+1 = U ∗
kAkUk

• Bk+1 = U ∗
kB

d1(Ak+1, Bk+1) < d1(Ak,Bk)

Then, lim
k→∞

d1(Ak, Bk) is a real minimum of µ(A, B).

53

Algorithm. An Algorithm for Computing µC(A, B)

Inputs: The matrices A ∈ Rn×n, B ∈ Rn×m

Output: µ(A, B).

Step 0. Ste A1 ≡ A, B1 ≡ B.
Step 1. For k = 1, 2, ... until convergence.

Step 1.1. Form Mk = (Ak − (ann)kI Bk).

Step 1.2. Factor Mk = LkVk,
Step 1.3. Find the QR factorization of

Lk = U ∗
kRk.

Step 1.4. Set Ak+1 = U ∗
kAkUk, Bk+1 = U ∗

kBk.

Step 1.5. If d1(Ak+1, Bk+1) = d1(Ak, Bk), stop.
End.

54

Example.

A =




0.950 0.891 0.821 0.922

0.231 0.762 0.445 0.738

0.607 0.456 0.615 0.176

0.486 0.019 0.792 0.406




B =




0.9350 0.0580 0.1390

0.9170 0.3530 0.2030

0.4100 0.8130 0.1990

0.8940 0.0100 0.6040


 •Tol = 0.00001.

Define µk = d1(Ak, Bk).

55

The algorithm produces the following converging sequence
of µk:

k µk k µk

0 1.42406916966838 10 0.41450782001833

1 0.80536738314449 11 0.41450781529413

2 0.74734006994998 12 0.41450781480559

3 0.52693889988172 13 0.41450781475487

4 0.42241562062172 14 0.41450781474959

5 0.41511102322896 15 0.41450781474904

6 0.41456112538077 16 0.41450781474899

7 0.41451290008455 17 0.41450781474898

8 0.41450831981698 18 0.41450781474898

9 0.41450786602577 19 0.41450781474898

and after 19 iteration the algorithm returns
µ = 0.41450781474898.

MATCONTROL Implemention: Function discn-
trl.

56

Stability, Robust Stability
and

Distance to Instability

(Chapter 7)

57

Stability and Inertia

• The continuous-time linear system:

ẋ(t) = Ax(t)

is asymptotically stable if and only if all the eigen-
values of A have negative real parts.

• Lyapunov approach

XA + ATX = −I

is unpractical.

(The widely-used Schur Method for Lyapunov equa-
tions is based on finding the real-Schur form of A.
The real schur form displays the eigenvalues anyway).

58

• Routh-Hurwitz criterian requires computing the char-
acteristic polynomial: Not numerically stable.

• From numerical view point, the best approach is to
Compute all the eigenvalues explicitly using
the standard QR iteration algorithm.

MATLAB Function: eig (A) computes all the
eigenvalues.

59

An Indirect Matrix-Equation Approach

(Carlson and Datta (1979)).

• Does not solve any Lyapunov matrix equation or com-
pute the eigenvalues explicitly.

• Finds a nonsingular symmetric matrix X such that

XA + A∗X = C ≥ 0.

In (A) = In (X).
X is negative definite if and only if A is Stable.

• Three times faster than explicitly computing eigenval-
ues.

• Numerical stability of the method not established yet.

60

Distance to an Unstable System

Let A be an n × n complex stable matrix.

Question: How “nearly unstable” is the
stable matrix A?

Definition. Let A ∈ Cn×n have no eigenvalue on
the imaginary axis.

Distance to Instability:

β(A) = min{‖ E ‖ |A + E ∈ U}.
• U = Set of matrices with atleast one imaginary eigen-
value.

61

An Example of a Nearly Unstable Matrix

A =




−0.5 1 1 1 1 1
0 −0.5 1 1 1 1
0 0 −0.5 1 1 1
0 0 0 −0.5 1 1
0 0 0 0 −0.5 1
0 0 0 0 0 −0.5




• A is perfectly stable.

• Change (6, 1)th entry from zero to
1

324
and compute

the eigenvalues agian of the perturbed matrix.

• The eigenvalues of the perturbed matrix are:
−0.8006,−0.7222 ± 0.2485j,−0.3775 ± 0.41201, 0.

• Conclusion: A is very close to an unstable
matrix.

62

A Characterization of the Distance to
Instability

Let σmin(A − jωI) be the smallest
singular value of A − jωI . Then

• β(A) = min
ω∈R

σmin(A − jωI).

63

A Bisection Algorithm to Measure
the Distance to Instability

Define 2n×2n Hamiltonian matrix H(σ), given σ ≥
0, by

H(σ) =

(
A −σI
σI −A∗

)
.

Theorem: σ ≥ β(A) if and only if H(σ)
has a purely imaginary eigenvalue.

64

Algorithm The Bisection Algorithm for the
Distance to an Unstable System. (Algorithm
7.6.1)

Inputs: A - An n × n stable complex
matrix

τ - Tolerance (> 0).

Outputs: Real numbers α and ν such that
either ν/10 ≤ α ≤ β(A) ≤ ν or 0 = α ≤ β(A) ≤ ν ≤
10τ.

Step 1. Set α ≡ 0, ν =
1

2
‖(A + A∗)‖2

Step 2. Do while ν > 10 max(τ, α)

σ ≡√ν max(τ, α)

If H(σ) has a purely imagi-
nary

eigenvalue,

then set ν ≡ σ; else α ≡ σ

65

Example Find β(A) for the matrix

A =

(−1 1
0 −0.0001

)
.

τ = 0.0100

Iteration 1.
Step 1. Initialization: α = 0, ν = 1.2071.

Step 2. 10 × max(τ, α) = 0.0100.

σ = 0.0059

H(σ) =




−1 1 −0.0059 0
0 −0.0001 0 −0.0059

0.0059 0 1 0
0 0.0059 −1 0.0001




66

The eigenvalues of H(α): −1, 1,±0.0083j.

Set ν = σ = 0.0059.
ν = 0.0059 less than 10 × max(τ, α) = 0.0100, stop.

Conclusion: β(A) ≤ 0.0059 < 10τ.

67

Remark: Signficant Computational Cost for finding
if H(α) has imaginary eigenvalue. Not practical for
large problems.

Convergence. If τ =
1

2
10−p‖A+A∗‖, then at most log2 p

bisection steps are required; for example, if τ =
1

2
×

10−8‖A + A∗‖, then at most three bisection steps are
required.

MATCONTROL NOTE. The Bisection algorithm
has been implemented in MATCONTROL function dis-
stabc.

68

Distance to an Unstable System and Lyapunov
Equation

• Let A be complex stable

• Let X satisfy the Lyapunov equation:

XA + A∗X = −M, M > 0.

• Then

β(A) ≥ λmin(M)

2 ‖ X ‖2

• λmin(M) denotes the smallest eigenvalue of M .

69

Example: Consider the same A as in the previous
example.

• Take M = I2.

• β(A) ≥ 5.002 × 105

70

Stability Radius
(Chapter 10)

• Measures the distance of a stable matrix from the set
of unstable matrices, where the distance is measured
by the size of additive perturbations.

• rF (A, B,C) = inf {σ1(∆) : A + B∆C is unstable}.

F = C or R (Complex or Real)

∆ −− Variable

B,C,−− Fixed

σ1 −− Largest singular value.

71

Theorem: (Stability Radius and Alge-
braic Riccati

Equation)

Let A be a complex stable matrix and let r ≡ rC(A,B, C) <
∞. Let ρ ∈ (−∞, r2). Then there exists a unique Her-
mitian stabilizing solution X of the Riccati equation:

XA + A∗X − ρC∗C − XBB∗X = 0.

Moreover, when ρ = r2, there exists a unique solution
X having the property that the matrix A − BB∗X is
unstable.

Conversely, if A is stable and if there exists a Her-
mitian solution X of the above algebraic Riccati equa-
tion, then necessarily ρ ≤ r2.

72

A Characterization of Complex Stability
Radius

• Define Hρ =

(
A − BB∗

ρCC∗ − A∗

)

• Then

ρ < rF (A, B,C) if and only Hρ2 does not
have on eigenvalue on the imaginary axis

73

Algorithm: A Bisection Method for the Complex

Stability Radius. (Algorithm 10.7.1)

Inputs:

1. The system matrices A, B, and C.

2. Some upper and lower estimates ρ+
0 and ρ−0 of the

complex stability radius ρ.

Output:
An approximate value of the complex stability radius ρ.
For k = 0, 1, 2, · · · , do until convergence.

Step 1. Take ρk =
ρ−k + ρ+

k

2
and compute Hρ2

k
.

Step 2. If Hρ2
k

has eigenvalues on the imaginary axis,

set ρ−k+1 ≡ ρ−k and ρ+
k+1 ≡ ρk. Otherwise set ρ−k+1 ≡ ρk

and ρ+
k+1 ≡ ρ+

k .
End

74

Example. A =

(
0 1
−1 −1

)
, B =

(
0
−1

)
, C =

(1, 0).

Take ρ−0 = 0, ρ+
0 = 1.

k = 0. Step 1. ρ0 =
1

2
. Hρ2

0
does not have an imaginary

eigenvalue.

Step 2. ρ−1 =
1

2
, ρ+

1 = 1.

k = 1. Step 1. ρ1 =
3

4
. Hρ2

1
does not have an imaginary

eigenvalue.

Step 2. ρ−2 =
3

4
, ρ+

2 = 1

75

k = 2. Step 1. ρ2 =
7

8
. Hρ2

2
has an imaginary eigen-

value.

Step 2. ρ−3 =
3

4
, ρ+

3 =
7

8

k = 3. Step 1. ρ3 =
13

16
. Hρ2

3
does not have an imaginary

eigenvalue.

Step 2. ρ−4 =
13

16
, ρ+

4 =
7

8

k = 4. ρ4 =
27

32
.

The iteration is converging towards r = 0.8660. The read-
ers are asked to verify this by carrying out some more
iterations.

MATCONTROL function: stabradc.

76

Feedback Stabilization
and

LQR Design

(Chapter 10)

77

Feedback Stabilization
Problem

Find a Stabilizing matrix K such
that (A − BK) is stable

Two Approaches for State Feedback
Stabilization

• Lyapunov Equation Approach

• LQR Approach.

78

title

+

−
⊕v u y

K

x

ẋ = Ax + Bu
y = Cx + Du

Figure 10.1: State Feedback Configuration

79

A Lyapunov-Equation Method For
Stabilization

• (A, B) Controllable
• |λmax(A)| - Eigenvalue of A with the largest real past

Step 1. Choose β > |λmax(A)|
Step 2. Solve the Lyapunov equation for Z:

−(A + βI)Z + Z[−(A + βI)]T = −2BBT.

Step 3. Obtain the stabilizing feedback matrix K

K = BTZ−1.

80

MATCONTROL Note: The above method has been
implemented in MATCONTROL Function: stablyap.

• Similar Method for Discrete-time stabilization (Theorem
10.2.4) MATCONTROL Function: stablyapd.

81

Example (Stabilizing the motion of the In-
verted Pendulum) (The problem of a cart with
inverted pendulum) with the following data:

m = 1kg

M = 2kg

l = 0.5 meters

and g = 9.18 meters per sec2.

Then

A =




0 1 0 0

00 −3.6720 0

0 0 0 1

0 0 22.0320 0


 .

The eigenvalues of A are 0, 0,±4.6938. Thus, with no
control input, there is an instability in the motion and
the pendulum will fall.

82

Stabilization using Lyapunov Equation.

B =




0

0.4

0

−0.4


 .

Step 1. β = 5. −(A + βI) stable.

Step 2. Z =




0.0009 −0.0044 −0.0018 0.0098

−0.0044 0.0378 0.0079 −0.0593

−0.0018 0.0079 0.0054 −0.0270

0.0098 −0.0593 −0.0270 0.1508




(The computed Z is symmetric positive definite but highly
ill-conditioned).

Step 3. K = BTZ−1 = 103(−0.5308,−0.2423,−1.2808,
−0.2923)

Verify: The eigenvalues of A−BK are {−5±11.2865j,−5±
0.7632j}.
• A − BK Stable

83

Continous-time LQR Program

• Given

Q = QT ≥ 0 (Weight for the State)

R = RT > 0 (Weight for the Control)

• Find the optimal control vector u(t) such that

Jc(x) =

∫ ∞

0

[xTQx + uTRu]dt

is minimized

subject to
ẋ = Ax + Bu, x(0) = x0

y = Cx

84

Solution of the LQR Problem

Suppose

• (A, B) Stabilizable

• (A, Q) Detectable

• X unique symmetric positive definite solution of the
CARE:

XA + ATX + Q − XBR−1BTX = 0.

Then

• Optimal control vector u0(t) = −Kx(t)

where

K = R−1BTX

• A − BK is Stable

• Minimum value of Jc(x) is xT
o Xxo.

85

Definition: The algebraic Riccati equation

XA + ATX + Q − XSX = 0,

where S = BR−1BT is called the Continuous-Time
Algebraic Riccati Equation or in short CARE.

Definition: The matrix H defined by

H =

(
A −S
−Q −AT

)
is the Hamiltonian matrix associated with the CARE.

Definition: A symmetric solution X of the CARE such
that A−SX is stable, is called a stabilizing solution.

86

Algorithm: The Continuous-time LQR Design
Algorithm

Inputs: The matrices A, B,Q,R, and x(0) = x0.

Outputs: X–The solution of the
CARE
K–The LQR feedback
gain matrix
Jcmin–The minimum
value of the cost function
JC(x).

Assumptions:

1. (A, B) is stabilizable and (A, Q) is detectable.

2. Q is symmetric positive semidefinite and R is sym-
metric positive definite.

• Detectbility: (A,C) is detectable if there exists a
matrix L such that A − LC is stable.

87

Step 1. Compute the stabilizing solution X of the
CARE:

XA + ATX − XSX + Q = 0, S = BR−1BT.

Step 2. Compute the LQR feedback gain matrix:

K = R−1BTX

Step 3. Compute the minimum value of

JC(x) : Jcmin = xT
0 Xx0.

88

Example: (LQR Design for the Inverted Pen-
dulum).

and Q = I4, R = 1, and x0 =




1

1

1

1


 .

Step 1. The unique positive definite solution X of the
CARE (obtained by using MATLAB function care) is

X = 103




0.0031 0.0042 0.0288 0.0067

0.0042 0.0115 0.0818 0.0191

0.0288 0.0818 1.8856 0.4138

0.0067 0.0191 0.4138 0.0911




Step 2. The feedback gain matrix K is

K = (−1,−3.0766,−132.7953,−28.7861).

89

Step 3. The minimum value of JC(x) is 3100.3.

• The eigenvalues of A−BK are: −4.8994,−4.5020,−0.4412±
0.3718j.
• Entries of K smaller than those obtained by Lya-
punor Method.

90

0 1 2 3 4 5 6
−60

−40

−20

0

20

40
Transient solutions for the problem of the Inverted Pendulum

Ly
ap

un
ov

 S
ta

bi
liz

at
io

n

time t

0 1 2 3 4 5 6
−2

0

2

4

6

8

LQ
R

 D
es

ig
n

time t

Figure Comparison of Transient Responses

• The largest magnitude in transient solution with Lya-
punov approach is SIX times larger then the one with
LQR design.

91

Numerical Solutions and Conditioning of
the Lyapunov

and
Sylvester Equations

(Chapter 8)

92

Lyapunov and Sylvester Equations
(Chapter 8)

• XA + ATX = C (Continuous-time Lyapunov
Equation)

• ATXA−X = C (Discrete-time Lyapunov Equa-
tion)

• XA + BX = C (Sylvester Equation)
Applications

• Stability and Robust Stability Analysis

• Balancing and Model Reduction

• Solution of Riccati Equation via Newton’s Method

In the above equations, the dimensions of A, B, and
C are:

• A ∈ Rn×n

• B ∈ Rm×m

• C ∈ R
m×n

93

A Template for Numerical Solution of the
Sylvester Equation

Step 1. Transform A and B to condensed forms us-
ing similarity:

U−1AU = Ã, V −1BV = B and V −1CU = C̃.

Step 2. Solve the reduced problem:

Y Ã + B̃Y = C̃.

where
Y = V −1XU.

Step 3. Recover the solution X:

X = V Y U−1.

94

Some widely used condensed forms:

• Diagonal forms

• Companion forms

• Jordan Canonical forms

These forms have to be avoided.

Condensed forms of the choice should be:

• Hessenberg Form

• Real Schur Form

95

Numerical Methods for Lyapunov and
Sylvester Equations

• The Schur Method for the Lyapunov Equation

• The Hessenberg-Schur Method for the Sylvester Equa-
tion

• The Modified Schur Methods for the Cholesky Factors
of the Lyapunov Equations.

• Solutions via diagonalization or companion
form should be avoided (see Example 8.8.1 of
the book).

96

A Remark on using Companion Form

Extensive numerical experiments show that the solu-
tion of the Lyapunov or Sylvester equation using com-
panion form of A of sizes larger than 15 have errors
almost as large the solutions themselves.

97

The Schur Method

Step 1. Reduction of the Problem

XA + ATX = C −→ Y RT + RY = Ĉ

• R = UTATU (Real-Schur form of AT)

• Ĉ = UTCU

• Y = UTXU

Step 2. Solve the reduced equation

Y RT + RY = Ĉ
by solving algebraic linear systems.
Step 3. Recover the solution X:

X = UY UT.

98

• Flop-Count: Approximately 32n3

(26n2 for Real Schur Form).

• MATCONTROL Function: lyaprsc (Real Schur)

• MATLAB Function: lyap (Complex Schur)

99

Notations: Y = (y1, . . . , yn)

Ĉ = (c1, . . . , cn).

An Illustration to compute Y : Y RT + RY = Ĉ

R =




r11 r12 r13

r21 r22 r23

0 0 r33


 , Ĉ = (c1, c2, c3)

• Compute y3 by solving a quasi-triangular system:

(R + r33I)y3 = c3

• Compute y1 and y2 simultaneously by solving:

R(y1, y2) + (y1y2)

(
r11 r21

r12 r23

)
= (c1 − r13y3, c2 − r23y3).

100

The Hessenberg-Schur Method for Sylvester
Equation

(Algorithm 8.5.1).

Step 1. Transform the problem to a Hessenberg-
Schur

Problem

• UTATU = R (Real Schur Form of AT). (QR Iter-
ation)

• V TBV = H (Upper Hessenberg matrix). (Householder’s
Method)

Step 2. Solve the Reduced Equation: Y RT +
HY = Ĉ

• Y = V TXU

• Ĉ = V TCU .

Step 3. Recover the solution: X = V Y UT.

101

An Example: Solving Y RT + HY = Ĉ

R =




r11 r12 0

r21 r22 0

0 0 r33


 , Ĉ = (c1, c2).

Then Y RT + HY is equivalent to:

(H + r33I)y3 = c3

and(
H + r11 r12I

r21I H + r22I

) (
y1

y2

)
=

(
c1 − r13y3

c2 − r23y3

)

102

• Flop-Count: Approximately(
10

m3

3
+ 26n3 + 10m2n + 5mn2

)
.

• MATCONTROl Function: sylvhrsc

• MATLAB Function: X = lyap (A, B, C) solves

AX + XB = −C

using complex schur decomposition.

103

The Cholesky Factors of the Lynpunov equa-
tion.

• Algorithms (Algorithms 8.6.1 and 8.6.2) exist
to compute the Cholesky factors without expliciting
computing the symmetric positive definite solutions
X .

• MATCONTROL Functions: LYAPCHLD and
LYAPCSD.

• No equivalent MATLAB Functions.

104

Comparisons of Different Methods and Rec-
ommendation
The numerical methods of choice are:
• The Schur method for the Lyapunov equations.

• The Hessenberg-Schur method for the Sylvester
equation. (Algorithm 8.5.1).

• The modified Schur methods (Algorithms
8.6.1 and 8.6.2) for the Cholesky factors.

105

Perturbation Analysis and Conditioning

of
Lyapunov and Sylvester Equation

106

Perturbation Analysis and Conditioning of
the Sylvester Equation

• The Sylvester equation is equivalent to

Px = c

where P = (In ⊗ B) + (AT ⊗ Im).

• Define δ = ||P−1||2(α + β)||X||F + γ

||X||F ,

where ||∆A|| ≤ εα, ||∆B||F ≤ εβ and ||∆C||F ≤
εγ.

ε = max

{||∆A||F
α

,
||∆B||F

β
,
||∆C||F

γ

}
.

Then

||∆x||F
||x||F =

||X̂ − X||F
||X||F ≤

√
3εδ.

107

• Define the sep function

1

sep(B,−A)
=

1

σmin(P)

Then

||X̂ − X||F
||X||F <

√
3ε

1

sep(B,−A)

(α + β)||X||F + γ

||X||F

• sep(B,−A) plays the dominat role in determining
the conditioning of the Lyapunov, and Sylvester equa-
tions.

small sep =⇒ Ill- Conditioning

large sep =⇒ Well-Conditioning

108

Example:

A =




1 1 1

0 1 1

0 0 1


 , B,




−0.9888 0 0

0 −0.9777 0

0 0 −0.9666




X = Exact Solution =


 1 1 1

1 1 1
1 1 1


 .

C = XA + BX + C.

• sep(B,−A) = 1.4207 × 10−6 (small)

109

The Sylvester equation is expected to be ill-
condition
Verify: Change the (1, 1) entry of A to 0.99999

• Relative Error in A = 0(10−7) (quite small)

• Relative Error in X = 0.2366 (very large)

X̂ = Computed Solution

=




1.0001 0.9920 1.7039

1.0000 0.9980 1.0882

1.0000 0.9991 1.0259




110

Conclusion

• If sep(B,−A) is small, then the problem is likely to
be ill-conditioned.

The Condition Number
• The condition number of the Sylvester equation has

been implemented in MATCONTROL
function CONDSYLVC.

(NO MATLAB Function).

Computing the sep function

• A Bisection algorithm exists (Algorithm 8.3.1).

• MATCONTROL Functions: sepkr and sepest

111

Numerical Stability of the Schur and the Hessenberg-
Schur Methods.

• The relative residual:

||C − (X̂A + BX̂)||F
||X̂||F

≤ (µ(||A||F + ||B||F)).

is guaranteed to be small.

• The smallness of the residual does not guarantee nu-
merical stability.

• The algorithms are conditionally stable, that is,
they are numerically stable only for well-conditioned
problems.

112

NUMERICAL SOLUTIONS
and

CONDITIONING
of

ALGEBRAIC RICCATI
EQUATIONS

(Chapter 13)

113

Continuous- Time Algebraic Riccati
Equations (CARE).

• XA + ATX − XBR−1BTX + Q = 0.

• Discrete-time Algebraic Riccati Equation (DARE)

ATXA−X+Q−ATXB(R+BTXB)−1BTXA = 0.

• of interest is the unique stabilizing solution.

• Assumptions for unique stabilizing solutions
(i) (A, B) is stabilizable (Discrete-stabilizable)

(ii) The Hamiltonian (Symplectic matrix) does not
have an imaginary eigenvalue (eigenvalue on the unit
circle.)

• Symplectic Matrix (for the Discrete-System)

M =

(
A + S(A−1)TQ −S(A−1)T

−(A−1)TQ (A−1)T

)

S = BR−1BT.

114

Computational Methods for the CARE and
DARE

• The Invariant Subspace Methods

• The Deflating Subspace Methods

• Newton’s Methods

• Matrix Sign-Function Methods

115

Invariant Subspace Methods (e.g. Eigenvector
Methods, Schur Methods)

• For the CARE
Compute the stable invariant subspace of the Hamilto-
nian matrix

H =

(
A −S

−Q −AT

)

S = BR−1BT.

If this subspace is spanned by the columns of

(
X1

X2

)
and X2

is invertible. Then the stabilizing solution X :

X = X2X
−1
1 .

116

• For the DARE
Compute the stable invariant subspace of the symplec-
tic matrix

M =

(
A + S(A−1)TQ −S(A−1)T

−(A−1)TQ (A−1)T

)

S = BR−1BT

117

The Eigenvector Method

• For the CARE

Step 1. Diagonalize V −1HV =

(−Λ 0
0 Λ

)
, Λ = diag

(λ1, . . . , λn).

Step 2. Partition V =

(
V11 V12

V21 V22

)
Step 3. Compute X = V21V

−1
11 .

• Highly unstable if the matrix H is defective or nearly
defective.

Cannot be Recommended for Practical use,
in general.

• MATCONTROL Function: riceig.

• For the DARE
Analogous method. Based on diagonalization of the sym-
plectic matrix.
• Not recommended for practical use.

118

The Schur Method
(Based on Ordered Real Schur Form) For the

CARE
(Algorithm 13.5.1)

Step 1. Compute the ordered Real Schur Form of H :

UTHU =

(
T11 T12

0 T22

)
• Spec (T11) = {Eigenvalues of H with negative real
parts}.

Step 2. Portion conformably U =

(
U11 U12

U21 U22

)
.

Step 3. Compute X = U21U
−1
11 .

119

MATCONTROL Functions: ricsch.

Numerical Stability:
• Numerical difficulties arise when H is nearly defective.
• Widely used in practice.

The Schur Method for the DARE

• Not used in practice, because of the requirement of
computing A−1 to form the symplectic matrix.

120

Deflation Subspace Methods (Generalized
and Inverse-Free Generalized Eigenvectors

and Schur Methods)

For the CARE - Based on findings basis for stable
deflating subspace of the pencil: PCARE − λNCARE

• PCARE =

(
A −S

−Q −AT

)
, S = BR−1BT.

• NCARE =

(
I 0

0 I

)
.

121

For the DARE: The Pencil is PDARE − λNDARE

• PDARE =

(
A 0
−Q I

)

• NDARE =

(
I S
O AT

)
.

(Requires no inversion of A This approach is
specially significant for the DARE)

122

Inverse-Free Option

For the CARE: From the Extended Pencil :
PE

CARE − λNE
CARE of the order (2n + m) (If R−1 to be

avoided)

• PE
CARE =




A 0 B

−Q −AT 0

0 BT R




• NE
CARE =




I 0 0

0 I 0

0 0 I




123

For the DARE: The extended pencil

• PE
DARE =




A 0 −B

−Q −I 0

0 0 R




• NE
DARE =




I 0 0

0 AT 0

0 BT 0


.

No Inversion of R Necessary

124

The Compressed Pencil Option of Order 2n

For the Care: PEC
CARE − λNEC

CARE

• QR Factorization:

(
W11 W12

W21 W22

) (
R
B

)
=

(
R̃
U

)

• PEC
CARE =

(
W22A W21B

T

−Q −AT

)

• NEC
CARE =

(
W22 0

0 I

)
.

125

For the DARE: PEC
DARE − λNEC

DARE

• QR Factorization:

(
W11 W12

W21 W22

) (
R
−B

)
=

(
R̃
0

)
.

• PEC
DARE =

(
W22A 0
−Q −I

)
.

• NEC
DARE =

(
W22 W21B

T

0 AT

)
.

126

• The Inverse-Free Generalized Schur
Algorithm (Algorithm 13.5.3) for the CARE

Step 1. Transform the compressed pencil to the ordered
RSF:

Q1(P
EC
CARE − λNEEC

CARE)Z = M̃ − λÑ

• M̃ = Quasi-upper triangular

• Ñ = Upper triangular

• The n stable eigenvalues appear first.

Step 2. Partition Z =

(
Z11 Z12

Z21 Z22

)
Step 3. Compute X : X = Z21Z

−1
11

127

MATLAB functions: care and dare are based on
inverse-free generalized schur algorithms.

• Analogous Method for the DARE (Algorithm 13.5.4)

• Implementation of step 1
Step 1 is implemented by using QZ algorithm for the
matrix pencil A − λB (see Chapter 4).

128

Newton’s Method for the CARE
(Algorithm 13.5.8).

Step 1. Start with an Initial Approx. X0.

Step 2. Compute the Succesive Approximations {Xi} :

(A−SXk)
TXk+1+Xk+1(A−SXk) = −XkSXk−Q.

(Lyapunov Equation)

S = BR−1BT.

Step 3. Continue until Convergence.

129

Newton’s Method for the DARE
(Algorithm 13.5.10)

• Analogous

• Based on the successive solution of the discrete-time
Lyapunov equations.

130

Stopping Criterion: Stop if for certian value of k
and prescribed tolerenace ε:

||Xk+1 − Xk||F
||Xk||F ≤ ε

or
k exceeds certain porescribed number N

131

Convergence Analysis of Newton’s Method
for the CARE

• Assumptions
(i) (A, B) is stabilizable

(ii) R > 0

(iii) The CARE has a unique stabilizing solution X .

Convergence Results

• All Xi are stabilizing.

• X ≤ . . . ≤ Xi+1 ≤ Xi . . . ≤ X1. (Monotocally de-
creasing)

• lim
i→∞

Xi = X

• Quadratic Convergence: ||Xi+1−X| ≤ c||Xi−
X||2 for i ≥ 1.

132

Convergence Analysis of Newtons’s Method
for the DARE

• Analogous results exist (Theorem 13.5.11).

133

Example Solve the CARE with

A =




−1 1 1

0 −2 0

0 0 3


 , B =


 1

1
1


 , Q = I3, R = 1.

X0 =




0.4 0.1 0.1

0.1 0.3 0

0.1 0 0.2


 .

Table of Relative Changes
i Relative Change

||Xi+1 − Xi||/||Xi||
0 0.1507
1 0.0038587
2 2.4025 ×10−6

3 5.5392 ×10−13

134

Newton’s Method with Line Search
(Algorithm 13.5.9)

Newton’s iterates can be written in the form:

Xi+1 = Xi + ∆i

where ∆i is the solution of the Lyapunov equation

(A−SXi)
T∆i+∆i(A−SXi)+ATXi+XiA+Q−XiSXi = 0.

Idea: Replace the iteration Xi+1 = Xi + ∆i

by

Xi+1 = Xi + ti∆i,

where ti is a scalar to be chosen such that ||Rc(Xi +
ti∆i)||F is minimized.

• Rc(X) = XA + ATX − XSX + Q

135

Recommendations

A. For the CARE: XA + ATX − XBR−1BTX +
Q = 0

• The Schur Method (Algorithm 13.5.1)
or
Inverse-Free Generalized Schur Method (In case R
is ill-conditioned) (Algorithm 13.5.3)
Followed by

• Newton’s Method (Algorithm 13.5.8) (As Itera-
tive Refinement)

Line Search Algorithm Preffered (Algorithm
in 13.5.9)

136

B. For the DARE

ATXA − X + Q − ATXB(R + BTXB)−1BTX = 0.

• Inverse-Free Generalized Schur Method (Algorithm
13.5.4)

Followed by

• Newton’s Method (Algorithm 13.5.10). Line Search
Algorithm Preferred (Algorithm 13.5.11)

137

Software for Riccati Equations

• MATCONTROL

RICSCHC — The Schur Method
RICNWTNC — The Newton’s Method

RICNWLSC — Newton’s Method with Line
Search

RICSGNC — The Matrix Sign-Function
Method

(Discrete versions are availabel)

• MATLAB
CARE- The Inverse-Free Generalized Schur
Method.
DARE- The Inverse-Free Generalized Schur
Method for the DARE

• CSP-ANM
Riccati Solve [a, b, q, r, Solve Method −→ Schur
Decomposition] −→ The Schur Method

Riccati Solve [a, b, q, r, Solve Method −→ Gener-
alized Schur Decomposition] −→ The Generalized
Schur Method
Riccati Solve [a, b, q, r, Solve Method −→ Newton,
Initial Guess → w0] −→ Newton’s Method

• SLICOT
SBOZOD - The Generalized Schur Method

138

Conditioning of the Riccati Equations

Define three operators

• Ω(Z) = (A − SX)TZ + Z(A − SX)

• Θ(Z) = Ω−1(ZTX + XZ)

• Π(Z) = Ω−1(XZX).

Define for any unitarily invariant norm.

• l = ||Ω−1||−1

• p = ||Θ||
• q = ||π||

139

Theorem on Perturbation Bound for the
CARE

CARE: XA + ATX + Q − SXS = 0

Perturbed CARE: (X + ∆X)(A + ∆A) + (A +
∆A)T (X +∆X)+(Q+∆Q)− (X +∆X)(S +∆S)(X +
∆X) = 0.

||∆X||
||X|| ≤ ||Q||

l||X||·
||∆Q||
||Q|| +φ

||A||
||X||·

||∆A||
||A|| +q

||S||
||X||·

||∆S||
||S||

140

The absolute condition numbers with respect
to Q, A, and S:

• κAB
CARE(Q) =

1

l

• κAB
CARE(A) = p

• κAB
CARE(S) = q

• The relative condition numbers are similary defined.

141

Estimating the Condition Numbers

• Assume that A − SX is stable.

Define Hk, k = 0, 1, 2 by

• (A − SX)THk + Hk(A − SX) = −Xk, k = 0, 1, 2.
(Lyapunov Equations).

The measures of sensitivity with respect to Q,
A, and S:

• r1 =
||H0|| ||Q||

||X|| (Sensitivity of X w.r.t. Perturbation in Q)

• r2 =
||H(1)

1 ||||A||
||X|| (Sensitivity of X w.r.t. Perturbation in A)

• r3 =
||H2||||S||

||X|| (Sensitivity of X w.r.t. Perturbation in S)

H(1) is defined out of H0 and H2.

142

An Example

A =




1 2 3

0.0010 4 5

0 7 8


 , B =


 1

0
0


 , R = 1.

Q =




1 1 1

1 5 3

1 3 5




• H2 = 4.8581 × 1018.

The CARE is expected to be ill-conditioned
w.r.t. the perturbation in B.

Verify: Change B to B + ∆B

∆B = 10−8


 −4.939

0.7715
−0.9411


 .

• Relative Error in B =
||Bnew − B||

||B|| = 0(10−8).

• Relative Error in X =
||Xnew − X||

||X|| = 0(10−5).

143

Numerical Methods
and

Conditioning
of

Eigenstructure Assignment
(Pole-Placement)

(Chapter 11)

144

Motivation for the Eigenvalue and
Eigenstructure Assignment

• Stability is not enough

• A designer should be able to choose feedback such that
the closed-loop system has certain transient responses
determined by the eigenvalues and eigenvectors of the
system.

145

The Second-order System

ẍ(t) + 2ζωnẋ(t) + ω2
nx(t) = 0

The eigenvalues are:

λ1,2 = −ζωn ± jωn

√
1 − ζ2

ζ - damping ratio
ωn - undamped natural frequency.
The response, of the dynamical system depends upon ζ
and ωn.

• In general, for a fixed value of ωn, the larger the value
of ζ(ζ ≥ 1), is, more smoother but slower the re-
sponses become.

• The smaller the value of ζ(0 ≤ ζ < 1) is, the re-
sponses become faster but more oscillatory.

146

Eigenvalue Assignment by State Feedback

Given A ∈ Rn×n, B ∈ Rn×m (m ≤ n) and Λ =
{λ1, . . . , λn}, where Λ is closed under complex
conjugation, find K ∈ Rm×n such that

Ω(A − BK) = Λ.

Here Ω(R) stands for the spectrum of R.

Theorem (The State Feedback Eigenvalue As-
signment Theorem) The EVA problem is solvable
for all Λ if and only if (A, B) is controllable. The so-
lution is unique if and only if the system is a single-
input system (that is, if B is a vector). In the multi-
input case, if the problem is solvable, there are in-
finitely many solutions.

147

Ackermann’s Formula (1972).

The well-known Ackermann formula (Single-input
Case):

f = eT
nC−1

M d(A)

• CM is the controllability matrix

• d(A) is the characteristic polynomial of the desired
closed-loop matrix.

• Ackermann’s formula is not numerically vi-
able.

• The MATLAB function acker has implemented Ack-
ermann’s formula and comments have been made
about the numerical difficulty with this formula in
the MATLAB user’s manual.

148

Example: A − 9 × 9 Random Matrix

B =




−0.1510
0
0
0
0
0
0
0
0


 , Λ =




−1.0000−1.5000−2.0000−2.5000−3.0000−3.5000−4.0000−4.5000−5.0000




The eigenvalues assigned by the Ackermann formula
are: 


−0.8824 − 0.4891j−0.8824 + 0.4891j−2.2850 − 1.0806j−2.2850 + 1.0806j−3.0575−3.8532−4.2637 − 0.7289j−4.2637 + 0.7289j




• The desired eigenvalues in Λ are completely
different from those assigned by the Acker-
mann formula.

149

The eigenvalues assigned by MATLAB function place
are: 



−4.9999−4.5001−4.0006−3.4999−3.0003−2.4984−2.0007−1.5004−0.9998




Similar results were obtained by the simple recursive Al-
gorithm
(Algorithm 11.2.1)

150

Some Numerically Viable Algorithms for
Eigenvalue Assignment

• The Single-Input Recursive Algorithm (Datta, (1987)).

• An RQ Implementation of the Recursive Algorithm
(Arnold and Datta (1998)).

• The Multi-Input Recursive Algorithm (Arnold and
Datta (1990)).

• The Explicit QR Algorithms (Miminis and Paige (1982),
(1988)).

• The Implicit QR Algorithm (Patel and Misra (1984)).

• The Schur Method (Varga (1991)).

• Algorithm for Partial Assignment (Datta and Sarkissan
(2002)).

151

A Template of Numerical Algorithm for EVA
Problem

Step 1. Transform the pair (A, B) to controller Hes-
senberg pair (H, B̃):

PAPT = H, an Unreduced Block Upper Hessenberg matrix,

PB = B̃ =

(
B1

0

)
, B1 is upper triangular.

Step 2. Solve the Hessenberg Problem; that is find F
such that

Ω(H − B̃F) = {λ1, . . . , λn}.
Note: In the single-input case, this step amounts to
finding a row vector fT such that Ω(H − βe1f

T) =
{λ1, ..., λn}.

Step 3. Find K

K = FP.

Remark: Step 1 and Step 3 are standard. The dif-
ferent algorithms differ in a way Step 2 is im-
plemented.

152

The Single-input EVA Problem

Given

• H – An unreduced upper Hessenberg Matrix

• {λ1, . . . , λn}, closed under complex conjuga-
tion

Find f – The feedback vector such that

Ω(H − βe1f
T) = {λ1, ..., λn}.

We will assume temporarily, without any loss
of generality, that β = 1 (Recall that Pb = b̄ =
βe1.)

153

Algorithm: The Recursive Algorithm for the
Single-Input Hessenberg EVA Problem (Algorithm
11.2.1)

Idea: Find a simultaneously a nonsingular matrix L and
the feedback vector f such that

HTL − LΛT = feT
1 L

• Λt =




∗ λ1 0
.

.

0 . . . λn

∗




154

Inputs:

• H — An Unreduced Upper Hessenberg

• {λ1, . . . , λn} — The n Eigenvalues to be Assigned.

Output:

• The feedback vector f :

Ω(A − bfT) = {λ1, . . . , λn}.

Step 1. Set l1 = en.

Step 2. Construct a set of normalized vectors {`k} as
follows:

For i = 1, 2, . . . , n − 1 do
Compute ˆ̀

i+1 = (HT − λiI)`i

`i+1 =
ˆ̀
i+1

‖ ˆ̀
i+1‖2

End

Step 3. Compute `n+1 = (HT − λnI)`n.

Step 4. Compute f =
`n+1

α
, α is the first entry of `n.

155

Efficiency:

1. Steps 2 through 4:
n3

3
flops.

2. Reduction to Hessenberg form:
10

3
n3.

Total:
11

3
n3 flops.

• Most efficient algorithm for single-input eigen-
value assignment proposed so far.

• Extremely easy to implement.

• Extreme ill-conditioning might cause instability.

MATCONTROL: polercs.

156

Numerical Stability

• Reliable for all practical purposes

• Many numerical experiments suggest the algorithm
works well even for some ill-conditioned problem.

• The QR and RQ versions of the recursive
algorithm are stable (Algorithms 11.2.2 and
11.2.3)

(Implemented in MATCONTROL Functions: pole-
qrs and polerqs, respictively)

157

Numerical Methods for Multi-input
Eigenvalue Assignment

• The Multi-input Version (Algorithm 11.3.1) of the
Recursive Algorithm (Most Efficient).

• The Explicit QR Algorithm (Section 11.3.1) (Stable
but can give Complex Feedback Matrix)

• The Schur Method (Algorithm 11.3.3) (Based on
Real-Schur Decomposition). Very Expensive

158

Algorithm 11.3.1. The Recursive Algorithm for
the Multi-input EVA Problem

Idea: Given

• The controller Hessenberg pair

(
H, B̃ =

(
R
0

))
Find

• A nonsingular matrix L
and

• A feedback matrix F
such that

LH − ΓH =

(
R
0

)
F.

159

Inputs:
A - The n × n state matrix
B - The n × m input matrix (m ≤ n).
S - The set of numbers {λ1, λ2, · · · , λn}, closed under
complex conjugation.

Assumption : (A, B) is controllable.

Output: A feedback matrix K such that Ω(A−BK) =
{λ1, λ2, · · · , λn}.

Step 1. Transform
• PAPT = H , an unreduced block upper Hessenberg
matrix

• PB = B̃ =

(
R
0

)
, R is upper triangular and has full rank.

Step 2. Partition S in such a way that S = ∪Ω(Λii), where
each Λii is an ni × ni diagonal matrix (ni’s are defined
by the dimensions of the blocks in H = (Hij); Hij ∈
Rni×nj).

160

Step 3. Set Lk = (0, · · · , 0, Ink
).

Step 4. For i = k − 1, · · · , 1 do
4.1 Compute L̃i ≡ Li+1H − Λi+1,i+1Li+1

4.2 Compute the QR decomposition of
L̃T

i : L̃T
i = QR

4.3 Define Li = QT
1 , where Q1 are the first ni

columns of the matrix Q = (Q1, Q2)
End

Step 5. Solve the linear system (L11R)F = L1H −Λ11L1
for F , where L11 is the matrix of the first n1 columns of
L1.

Step 6. Compute the feedback matrix K of the original
problem: K ≡ FP

161

Theorem 11.3.1 The feedback matrix K constructed
by the above algorithm is such that

Ω(A − BK) = {λ1, λ2, · · · , λn}.
proof. Proof follows from the discussion preceding the
algorithm.

�
Flop-count: Approximately 19

3 n3 + 15
2 n2m flops are re-

quired to implement the algorithm.

Numerical Stability. Stable in practice. Reli-
able in the sense that the stability can be monitored by
the conditioning of the structure matrix L.

162

Conditioning of the Closed-loop Eigenvalues

Question: How far are the eigenvalues of the
computed closed loop matrix M̂c = A − BK̂
from the desired eigenvalues {λ1, · · · , λn}?
Answer: Even though a feedback matrix has been
computed using a numerically stable algorithm, there
is no guarantee that the eigenvalues of the closed-loop
matrix will be near those which are to be assigned.

163

Contribution Factors for Conditioning

• The conditioning of the problem of determining the
feedback matrix K from the given data.

• The condition number (with respect to a p-norm) of
the eigenvector matrix of the closed-loop system.

• The distance to uncontrollability, and the distance be-
tween the open-loop and closed-loop eigenvalues.

• The norm of the feedback matrix.

164

Example Consider EVA with the following data:

A =




−4 0 0 0 0

0.0001 −3 0 0 0

0 0.0001 −2 0 0

0 0 0.0001 −1 0

0 0 0 0.0001 0




, B =




1

0

0

0

0




.

S = {λ1, λ2, λ3, λ4, λ5} = {10, 12, 24, 29, 30}.
Then K = (−115, 4.887 · 107,−9.4578 · 1012, 8.1915 ·
1017,−2.5056 · 1022)

• The eigenvalue assignment problem with the
above data is very ill-conditioned as the follow-
ing computation shows.

• Change a51 −→ 10−6.

• The closed-loop eigenvalues: ±1.5829×108,−3,−2,−1.
Completely Different.

165

Explanation

• Ill-conditioning of the feedback vector: Let
K̂ be obtained by changing the first entry of K̂ −114.999
and leaving the remaining entries unchanged.

The eigenvalues of (A − BK̂) are:
{29.5386 ± 0.4856j, 23.9189, 12.0045, 9.9984}.
So, the problem of computing the feedback
vector K is ill-conditioned.

• Nearness to Uncontrollability (Indicated by the
smallness of the subdiagonal entries of A).

• The open-loop eigenvalues are well-separated
from those of the closed-loop eigenvalues.

• Ill-conditioning of the eigenvector matrix:
Cond2(X) = 1.3511 × 1024. (Large.)

Note: The feedback vector K was computed using the
Recursive Algorithm. The MATLAB function place
cannot place the eigenvalues.

166

Robust Eigenvalue Assignment

• Find K such that the Closed-loop eigenvalues are as
insensitive as possible due to small perturbations
in the data.

Solution Idea: Choose the eigenvector matrix X
such that is as well-conditioned as possible.

• MATLAB Function: place. (Kautsky-Nichols-Van
Dooren Algorithm)

167

• Idea behind “place”.

• Factorize B = [U0, U1]

[
Z
0

]
.

• Choose the vectors of the matrix X from the orthonor-
mal bases of the subspaces:

sj = N{UT
1 (A − λjI)}

and ŝj = Complement of sj.

• K = Z−1UT
0 (A − XΛX−1)

Λ = diag (λ1, ..., λn).

• For details, see Algorithm 11.6.1

168

Recommendations
A. For single-input problem

• Try Recursive Algorithm (Algorithm 11.2.1) first.
In case of possible ill-conditioning, use its RQ version
(Algorithm 11.2.3)

B. For Multi-input problem
• Try the multi-input version of the recursive Algorithm
(Algorithm 11.3.1) first. If the accuracy is not good,
use the Explicit QR Algorithm (Section 11.3.1).

169

MATCONTROL

POLERCS - Single-input pole placement using the recur-
sive algorithm

POLEQRS - Single-input pole placement using the QR
version of the recursive algorithm

POLERQS - Single-input pole placement using RQ ver-
sion of the recursive algorithm

POLERCM - Multi-input pole placement using the recursive
algorithm

POLERCX - Multi-input placement using the modified

recursive algorithm that avoids complex

arithmetic and complex feedback.

170

POLEQRM - Multi-input pole placement using the

explicit QR algorithm

POLESCH - Multi-input pole placement using the Schur

decomposition

POLEROB - Robust pole placement

171

CSP-ANM

• The recursive algorithm is implemented as
StateFeedbackGains [system, poles,

Method → Recursive].

• The explicit QR algorithm is implemented as
StateFeedbackGains [system, poles, Method →
QR Decomposition].

• The Schur method is implemented as
StateFeedbackGains [system, poles, Method → Schur
Decomposition].

• The RQ implementation of the recursive single-input
algorithm is implemented as StateFeedbackGains
[system, poles, Method → RecursiveRQDecomposition].

• The implicit single-input RQ algorithm is implemented
as StateFeedbackGains [system, poles, Method
→ ImplicitRQDecomposition].

172

SLICOT

Eigenvalue/Eigenvector Assignment

SB01BD Pole assignment for a given matrix pair (A, B)
SB01DD Eigenstructure assignment for a controllable ma-

trix pair (A, B) in orthogonal canonical form
SB01MD State feedback matrix of a time-invariant single-

input system

POLEPACK

A collection of MATLAB programs for eigenvalue assign-
ment, developed by G.S. Miminis (1991). Available on
NETLIB.

173

Partial Eigenvalue Assignment Problem
(PEVAP).

Given

• A part of the spectrum {λ1, . . . , λp}, p << n.

• A self-conjugate set {µ1, . . . , µp}.
• A control matrix B

Find F such that

Ω(A − BF) = {µ1, . . . , µp; λp+1, . . . , λn︸ ︷︷ ︸
No Change

}

• More practical, especially for large and sparse sys-
tems.

174

Challenges

• Solve PEV AP by knowing only the first p eigenval-
ues and the corresponding eigenvectors.

• Prove the invariance of the large numbers (n − p)
eigenvalues by mathematical results.
(Not possible to compute all eigenvalues in prac-
tice, if A is very large and sparse).

175

A Parametric Solution of PEVAP

• Λ1 = diag (λ1, ..., λp)

• Y1 = (y1, ..., yp) (The left eigenvector matrix)

• Λcl = diag (µ1, ..., µp).

• Γ = An arbitrary parametric matrix

• Assumptions (i) (A, B) is partially controllable (ii)
The set {λ1, . . . , λp}, {λp+1, . . . , λ2n} and {µ1, . . . , µp}.
are mutually disjoint.

• F = ΦY H
1 solves PEVAP.

• φ is the solution of the p× p linear system: φZ1 = Γ.

• Z1 satisfies the p × p Sylvester equation Λ1Z1 −
Z1Λcl = Y H

1 BΓ.

176

Algorithm: A Parametric Algorithm for Par-
tial Eigenvalue Assignment Problem (Algo-
rithm 11.3.4)

Inputs:

• The matrices A and B.
• The self-conjugate subset {λ1, . . . , λp} of the spec-

trum {λ1, . . . , λn} of the matrix A.

• The left eigenvectors {y1, ..., yp}.
• A self-conjugate set of numbers {µ1, ..., µp}.
Output:

• The real feedback matrix F such that the spectrum
of the closed-loop matrix A − BF is {µ1, . . ., µp;
λp+1, . . ., λn}.

Assumptions:

• The matrix pair (A, B) is partially controllable
with respect to the eigenvalues λ1, . . . , λp.

• The sets {λ1, ..., λp}, {µ1, ..., µp} and {λp+1, ..., λ2n}
are disjoint.

177

Step 1.Form

Λ1 = diag(λ1, . . . , λp), Y1 = (y1, . . . , yp),

and Λc1 = diag(µ1, . . . , µp).

Step 2.Choose arbitrary m × 1 vectors γ1, . . . , γp in
such a way that µj = µk implies γj = γk and form
Γ = (γ1, . . . , γp).

Step 3.
Find the unique solution Z1 of the Sylvester equation

Λ1Z1 − Z1Λc1 = Y H
1 BΓ .

If Z1 is ill-conditioned, then return to Step 2 and select
different γ1, . . . , γp.

Step 4.Solve ΦZ1 = Γ for Φ.

Step 5.Form F = ΦY H
1 .

178

Computational Requirements and Features

• Knowledge of only partial spectrum and eigenvectors.

• Solution of a p × p small Sylvester equation.

• Solution of a small p × p linear algebraic system.

• Mathematical results guarantee that the (n−p) eigen-
values remain unchanged.

• Parametric nature is useful for robust partial eigen-
value assignment.

179

State Estimation,
Kalman Filter

and

LQG Design

(Chapter 12)

180

State Estimation Problem

Estimate the state vector x(t), knowing the
input u(t), the output vector y(t), and the
matrices A, B, and C.

• The estimate is denoted by x̂(t).

• The error vector e(t) = x(t) − x̂(t).

181

Two Common Approaches for
State-Estimation

A. Eigenvalue Assignment Approach

• Find a feedback matrix K such that (A − KC) is
stable.

• Compute x̂ by solving the system of differential equa-
tions:

(x̂)T = (A − KC)x̂(t) + Ky(t) + Bu(t).

(Choosing the initial condition arbitrarily)

• Error: e(t) = (A − KC)e(t)

e(t) → 0 as t → ∞.

182

B. Sylvester-Equation Approach

• Solve the Sylvester-observer Equation for a non-
singular solution X :

XA − FX = GC.

• Choose F stable (The eigenvalues having negative real
parts)

• Construct the observer: ż(t) = Fz(t) + Gy(t) +
XBu(t).

• The estimate x̂(t) = X−1z(t)

• Error e(t) = z(t) − Xx(t) −→ 0 for any x(0), z(0),
and u(t).

183

The Sylvester-Observer Equation

XA − FX = GC

• A, C - Given

• X, F,G - To be chosen.

The Classical Sylvester Equation

XA − FX = C

• A, C, and F Given

• X needs to be found.

184

Algorithm: Reduced-order Observer Design via
Sylvester-Observer Equation

Inputs: The matrices A, B, and C of order n×n, n×
m, and r × n, respectively.

Output: An estimate x̂ of the state vector x.

Assumptions: (i) (A, C) is observable. (ii) C is of
full rank.

Step 1. Choose an (n − r) × (n − r) stable matrix
F .

Step 2. Solve the reduced-order Sylvester-observer
equation

XA − FX = GC,

choosing G such that (F,G) is controllable.

Step 3. Compute P = XB

• X is of order (n − r) × n

• F is of order (n − r) × n

• G is of order (n − r) × r

185

Step 4. Construct the reduced-order observer:

ż = Fz + Gy + Pu

Step 5. Compute the

x̂ =

(
C
X

)−1(
y
z

)
.

186

Example (Helicopter Problem)

A =




−0.02 0.005 2.4 −32

−0.14 0.44 −1.3 −30

0 0.018 −1.6 1.2

0 0 1 0


 , B =




0.14 −0.12

0.36 −8.6

0.35 0.009

0 0




C =


 0 1 0 0

0 0 0 57.3


 .

• Rank (C) = 2, r = 2.

187

Step 1. Choose F =


 −1 0

0 −2


 .

Step 2. Choose G =


 1 2

3 4


.

X =


 −0.117 −0.0822 62.1322 37.2007

−0.1364 −1.9296 428.2711 −173.4895


 .

Step 3. P = XB =


 21.7151 1.2672

149.1811 20.4653


 .

Step 4.

x̂ =


 C

X


−1 y

z




=




−24.5513 −135.1240 124.1400 −18.0098

1 0 0 0

−0.0033 −0.0360 0.0395 −0.0034

0 0.0175 0 0




 y

z




188

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−20

−10

0

10

20

30

time t

 x
1(t

)

State
Estimate

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2.5

−2

−1.5

−1

−0.5

0

0.5

time t

 x
3(t

)

State
Estimate

Figure 12.3. The First and Third Variables
of the State x(t) and the Estimate x̂(t), for the
Helicopter Example.

• Pretty good estimates

• The third variables are indistinguishable.

189

State Feedback Control Vector

u(t) = Kx̂(t)

−K Observer

+

−

u
s

⊕
ẋ = Ax + Bu

y = Cx

x̂

y

190

Separation Property

• The Observer design and feedback design can be car-
ried out independently, and the calculation of the
feedback gain is not affected whether the true state
x or the estimated state x̂ is used.

191

Numerical Solution of the Sylvester-Observer Equation:

X A − F X = G C

G
ive

n
A Template

192

Step 1. Reduce the pair (A, C) to Observer-Hessenberg
pair (H,C):

OAOT = H, an unreduced block upper-Hessenberg matrix

COT = C̄ = (0, C1)

Step 2. Solve the reduced Hessenberg Sylvester-
observer equation:

Y H − FY = GC̄,

Step 3. Recover the solution X of the original
problem from the solution of the reduced prob-
lem:

X = Y O

193

An Observer-Hessenberg Method for
Y H − FY = GC

(Van Dooren (1984))

• Set q = n − r. Set

Y =




1 y12 · · · · · · y1,n

.

0 1 yq,q+1 · · · yq,n




F =




f11 0 · · · · · · 0
f21 f22 0 · · · 0
...

fq1 · · · · · · · · · fqq


 , G =




gT
1

gT
2

. . .
gT

9


 .

where the diagonal entries fii, i = 1, . . . , q are
preassigned.

• Thus, the off diagonal entries of F, Y , and all the entries
of G are to be computed.

194

Computation of Y, F, and G n = 3, r = 1


 1 y12 y13

0 1 y23






h11 h12 h13

h21 h22 h23

0 h32 h33


−


 f11 0

f21 f22





 1 y12 y13

0 1 y23


 =

(
g11

g21

)
︸ ︷︷ ︸

G

(
0 0 c1

)︸ ︷︷ ︸
C̄

.

• First row of Y and first row of G:

(y12, y13, g11)




h21 h22 − f11 h23

0 h32 h33 − f11

0 0 −c1


 =




f11 − h11

−h12

−h13




T

• Second row of F , second row of Y and second row of
G:

(f21, y23, g21)




−1 −y12 −y13

0 h32 h33 − f22

0 0 −c1


 =




−h21

f22 − h22

−h23




T

.

195

Algorithm: An Algorithm for the Multi-Output

Sylvester-Observer Equation (Al-
gorithm 12.7.1)

Step 0. Set n − r = q.

Step 1. Transform the pair (A, C) to the observer–Hessenberg
pair (H, C̄):

OAOT = H, an unreduced block upper Hessenberg matrix

COT = C

Step 2. Set Fq×q lower triangular: only off- diagonal en-
tries to be found.

Step 3. Solve for Y :

Y H − FY = GC̄,

where Y has the form as above, exploiting the structure
of Y and F .

Step 4. Recover X from Y :

X = Y O.

196

Example Consider the Helicopter Example again.

Here n = 4, r = 2.

Step 1. The observer-Hessenberg pair of (A, C):

H =




−0.0200 2.4000 0.0050 −32.0000

0 −1.6 0.0180 1.200

−0.1400 −1.3000 0.4400 −30.0000

0 1 0 0


 ,

C̄ =


 0 0 1 0

0 0 0 57.3


 .

197

Step 2. Set f11 = −1, f22 = −2

Step 3. y1 = (0, 7, 6.7), g1 = (10.085,−4.1065).

1st row of y = (1, 0, 7, 6.7).

f21 = 0.0007
y2 = (−0.0053,−0.4068),

g2 = (0, 0.0094).

F =


 −1 0

0.0007 −2


 , G =


 10.085 −4.1065

0 0.0094


 .

198

The second row of Y = (0, 1,−0.0053,−0.4068).
Therefore,

Y =


 1 0 7 6.7

0 1 −0.0053 −0.4068


 .

Step 4. Recover X from

Y : X = Y O =


 1 7 0 6.7

0 −0.0053 1 −0.4068


 .

Verify: ‖ XA − FX − GC ‖2= O(10−14)

Flop-count:
Solving for F,G, and Y (exploiting the special structures

of these matrices): 2(n − r)rn2 flops.

199

• A block generalization of the Algorithm ex-
ists.

Ref : J. Carvalho and B.N. Datta
A block algorithm for the sylvester-observation equa-
tion arising in state estimation, Proc. IEEE Conf. Dec.
Control, Orlando, Florida, 2001.

MATCONTROL Function: SYLVOBSM.

This block algorithm is suitable for high performance
computing and is also more efficient in sequential com-
puting.

200

Comparison of the Actual and Estimation
States

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−20

−10

0

10

20

30
Comparison of the graphs of the first component

time t

 x
1(t

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2.5

−2

−1.5

−1

−0.5

0

0.5
Comparison of the graphs of the third component

time t

 x
3(t

)

Figure: Comparisons of the First and Third
Components of the Exact State x(t) and the
Estimated State x̂(t), obtained by Algorithm
12.7.1.

201

MATCONTROL Functions
SYLVOBSM - Block triangular algorithm for

Sylvester-observer equation.
SYLVOBSM - Solving the multi-output

Sylvester-observer equation.
SYLVOBSC - Solving the constrained

Sylvester-observer equation.

ADVANCED NUMERICAL METHODS Func-
tions

Design of reduced-order state estimator (observer)

• The reduced-order state estimator using pole assign-
ment approach is computed by
ReducedOrderEstimator [system, poles].

• The reduced-order state estimator via solution of the
Sylvester-observer equation using recursive bidiagonal
scheme is computed by ReducedOrderEstimator [sys-
tem, poles, Method → RecursiveBidiagonal] and
ReducedOrderEstimator [system, poles, Method →
RecursiveBlockBidiagonal] (block version of the
recursive bidiagonal scheme).

• The reduced-order state estimator via solution of the
Sylvester-observer equation using recursive triangu-
lar scheme is computed by ReducedOrderEstimator
[system, poles, Method → RecursiveTriangular]
and ReducedOrderEstimator [system, poles,
Method → RecursiveBlockTriangular] (block ver-
sion of the recursive triangular scheme).

202

Optimal State Estimation: The Kalman Filter

Consider the stochastic system

ẋ(t) = Ax(t) + Bu(t) + Fw(t)
y(t) = Cx(t) + v(t),

• w(t) - Noise in the Input.

• v(t) - Noise in the Output.

Find x̂(t) Such that

E[‖ x(t) − x̂(t) ‖2], is minimized
as t → ∞.

203

Assumptions

1. The system is controllable and observable.

2. Both w and v are white noise, zero-mean stochastic
processes.

3. The noise processes w and v are uncorrelated with
one another; that is,

Ew(t)vT (s) = 0.

4. The initial state x0 is a Gaussian zero-mean ran-
dom variable with known covariance matrix; and un-
correlated with w and v. That is,

E[x0] = 0

E[x0x
T
0] = S, E[x0w

T (t)] = 0, E[x0v
T (t)] = 0,

where S is the positive semidefinite covariance
matrix.

204

Theorem (Kalman Filter). Under the above as-
sumptions, the best estimate x̂(t) (in the linear least-
mean-square sense) can be generated by the Kalman
filter:

˙̂x(t) = (A − KfC)x̂(t) + Bu(t) + Kfy(t)

• Kf = XfC
TV −1 (Filter-Gain)

• Xf is the symmetric positive definite solution of the
Continuous-timeFilter Algebraic Riccati Equa-
tion (CFARE):

AX + XAT − XCTV −1CX + FWFT = 0.

�
Note: CFARE is dual to CARE.

205

Algorithm: The State Estimation of the Stochas-
tic System using Kalman Filter (Algorithm
12.9.1)

Step 1. Obtain the unique symmetric positive
definite solution Xf of the CFARE:

AXf+XfA
T−XfC

TV −1CXf+FWFT = 0.

Step 2. Form the filter gain matrix Kf =
XfC

TV −1.

Step 3. Obtain the estimate x̂(t) by solving the
Kalman filter.

206

Duality Between Kalman Filter and the LQR
Problems

1. Guaranteed Stability

The filter matrix A − KfC is stable; that is,
Reλi(A − KfC) < 0; i = 1, 2, · · · , n, where λi, i =
1, · · · , n, are the eigenvalues of A − KfC.

2. Guaranteed Robustness

Define

Kalman Filter Transfer: GKF (s) ≡ C(sI −
A)−1Kf,

Open-Loop Transfer: GFOL(s) ≡ C(sI −
A)−1F.

σmax(I + GKF (s))−1 ≤ 1

and

σmin(I + G−1
KF (s)) ≥ 1

2
.

207

MATLAB Note. The MATLAB function kalman
designs a Kalman state estimator given the state-space
model and the process and noise covariance data. kalman
is available in MATLAB control system toolbox.

208

Example Consider the stochastic system:

ẋ(t) = Ax(t) + Bu(t) + w(t)

y(t) = Cx(t) + v(t)

with A, B, and C as in Helicopter Example.

Take W = BBT , V =


 1 0

0 1


, F = I4×4

Step 1. The symmetric positive definite solution Xf

of the CFARE

AX + XAT − XCTV −1CX + FWFT = 0

is

Xf =




8.3615 0.0158 0.0187 −0.0042

0.0158 9.0660 0.0091 −0.0031

0.0187 0.0091 0.0250 0.0040

−0.0042 −0.0031 0.0040 0.0016




209

Step 2. The filter gain matrix Kf = XfC
TV −1 is

Kf =




0.0158 −0.2405

9.0660 −0.1761

0.0091 0.2289

−0.0031 0.0893




• The optimal state estimator of x̂(t) :

˙̂x(t) = (A − KfC)x̂(t) + Bu(t) + Kfy(t).

• The filter eigenvalues (The eigenvalues of A−KfC):

{−0.0196,−8.6168,−3.3643 ± j2.9742} .

210

Comparison of the Exact State and
the Estimated State by Kalman Filters

0 1 2 3 4 5 6
−600

−500

−400

−300

−200

−100

0

100
Comparison of the graphs of the first component

time t

 x
1(t

)

0 1 2 3 4 5 6
−2000

−1500

−1000

−500

0
Comparison of the graphs of the second component

time t

 x
2(t

)

Comparisons of the First and Second Compo-
nents of the Exact State x(t) and the Estimated
State x̂(t) obtained by Kalman Filter.

• Pretty good estimates

• The second components are indistinguishable.

211

Linear Quadratic Gaussian Problem
(LQG: Continuous-time)

Given

• The controllable and observable stochastic system:

ẋ(t) = Ax(t) + Bu(t) + Fw(t)

y(t) = Cx(t) + v(t)

• The weighting matrices Q ≥ 0, R > 0.

• The noises w(t) and v(t) Gaussian, white, zero-
mean, and stationary process

• Covariant matrices W = WT ≥ 0, V = V T > 0.

212

Find the optimal control u(t) minimizing

JQG = lim
T→∞

1

2T
E

[∫ T

−T

(xTQx + uTRu)dt

]
.

213

Solution of the LQG Problem
• LQG solution ≡ Deterministic LQR + Kalman Filter

• The optimal control vector u(t) for the LQG
problem:

u(t) = −Kcx̂(t)

(i) Kc is obtained by LQR

Kc = R−1BTXc,

Xc stabilizing solutions of the CARE

XcA + ATXc + Q − XcBR−1BTXc = 0

214

(ii) The vector x̂(t) is generated by the Kalman filter:

˙̂x(t) = (A − KfC)x̂(t) + Bu(t) + Kfy(t).

Kf = Filter Gain Matrix XfC
TV −1

Xf = Solution of the continuous-time Filter

Algebraic Riccati Equation

AXf + XfA
T − XfC

TV −1CXf + FWFT = 0.

215

• The minimum value of the performance measure
JQG:

J∗
QG = trace(XcKfV KT

f) + trace(XfQ),

216

Filter

u y

Kalman

Figure 12.2: The LQG Design via Kalman Filter

x̂

ẋ = Ax + Bu + Fw
y = Cx + v

−Kc

217

Algorithm: The Continuous-time LQG
Design Method (Algorithm 12.10.1)

Step 1. (LQR) Obtain the symmetric positive definite
stabilizing solution Xc of the CARE:

XA + ATX − XBR−1BTX + Q = 0.

Step 2. (LQR) Compute Kc = R−1BTXc

Step 3. (Kalman Filter)
3.1. Solve the CFARE:

AX + XAT − XCTV −1CX + FWFT

to obtain the symmetric positive definite stabilizing solu-
tion Xf .

3.2. Compute filter gain matrix

Kf = XfC
TV −1

Step 4. (Kalman Filter)

˙̂x(t) = (A − BKc − KfC)x̂(t) + Kfy(t)

Step 5. Determine the LQG control law

u(t) = Kcx̂(t)

218

Example: Consider the LQG design for the heli-
copter problem with

Q = CTC, and R = I2×2,

and the same W and V .
Step 1. The stabilizing solution Xc of the CARE

Xc =




0.0071 −0.0021 −0.0102 −0.0788

−0.0021 0.1223 0.0099 −0.1941

−0.0102 0.0099 41.8284 174.2

−0.0788 −0.1941 174.2 1120.9




Step 2. The control gain matrix Kc

Kc = R−1BTXc =


 −0.0033 0.0472 14.6421 60.8894

0.0171 −1.0515 0.2927 3.2469




Step 3. The filter gain matrix Kf

Kf =




0.0158 −0.2405

9.0660 −0.1761

0.0091 0.2289

−0.0031 0.0893


 .

219

• The close-loop eigenvalues:

{−3.3643 ± 2.9742j,−0.0196,−8.6168}︸ ︷︷ ︸
Controller Eigenvalues

∪

{−0.0196,−8.6168,−3.3643 ± 2.9742j}︸ ︷︷ ︸
Filter Eigenvalues

• The minimum Value of JQG: J∗
QG = 42.5327.

220

Selected Software

MATLAB CONTROL SYSTEM TOOLBOX

LQG design tools
• kalman - Kalman estimator
dkalman - Discrete Kalman estimator for continuous plant
lqgreg - Form LQG regulator given LQ

gain and Kalman
estimator

221

SLICOT
FB01RD Time-invariant square root co-

variance filter
(Hessenberg form)

FB01TD Time-invariant square root in-
formation filter
(Hessenberg form)

FB01VD One recursion of the conventional Kalman filter
FD01AD Fast recursive least-squares filter.

222

Internal Balancing
and

Model Reduction
(CHAPTER 14)

223

Problem: Construct a Reduced-order Model (ROM) such
that ROM is close, in some sense, to the original full-
order model.

Measure of Closeness

• Minimize ||G(s) − GR(s)||.
Two Norms : (i) H∞− Norm
(ii) Hankel Norm

Model Reduction Problem

Given the transfer function

G(S) = C(SI − A)−1B + D,

Find a reduced-order transfer function

GR(S) = CR(SI − AR)−1BR + DR

Such that

||G(S) − GR(S)||∞
is minimized.

224

Balanced Truncation Method

• Internal Balancing + Truncation

Original
Model
(FOM)

↓
Balancing

↓

Balanced
Model

↓
Truncation↓

ROM

Figure: Balanced Truncation

225

Internal Balancing

Idea: Given a Stable System construct a transform-
ing matrix T such that the controllability and observ-
ability Gramminas are the same and is equal to a di-
agonal matrix:

T−1CGTT = TTOGT = Σ (diagonal).

Σ = diag (σ1, . . . , σn)

• Hankel Singular Values: σ1 ≥ σ2 ≥ . . . ≥ σn

• Balanced system (Ã, B̃, C̃):

Ã = T−1AT

B̃ = T−1B

C̃ = CT

226

An Algorithm for Internal Balancing
(Algorithm 14.2.1)

Step 1. Compute the Controllability and Observ-
ability Grammians:

ACG + CGAT + BBT = 0

ATOG + OGA + CTC = 0

Step 2. Compute the Cholesky factors: (Assumptions:
(A, C) is observable and (A, B) is controllable).

CG = LcL
T
c

OG = LoL
T
o

227

Step 3. Find SVD of LT
o Lc = UΣV T .

Step 4. Compute the transforming matrix:

T = LcV Σ−1
2

Step 5. Compute the balanced realization (Ã, B̃, C̃) :

Ã = T−1AT

B̃ = T−1B

C̃ = CT.

228

Example 14.2.1 Consider finding the balanced real-
ization using Algorithm 14.2.1 of the system (A, B,C)
given by:

A =


 −1 2 3

0 −2 1
0 0 −3


 , B = (1, 1, 1)T , C = (1, 1, 1).

Step 1. By solving the Lyapunov equation for CG2, we
obtain

CG =


 3.9250 0.9750 0.4917

0.9750 0.3667 0.2333
0.4917 0.2333 0.1667


 .

Similarly, by solving the Lyapunov equation for OG, we
obtain

OG =


 0.5000 0.6667 0.7917

0.6667 0.9167 1.1000
0.7917 1.1000 1.3250


 .

Step 2. The Cholesky factors of CG and OG are:

Lc =


 1.9812 0 0

0.4912 0.3528 0
0.2482 0.3152 0.0757


 ,

Lo =


 0.7071 0 0

0.9428 0.1667 0
1.1196 0.2667 0.0204


 .

229

Step 3. From the singular value decomposition of LT
o Lc

(using MATLAB function svd):

[U, Σ, V] = svd(LT
o Lc)

we have

Σ = diag
(

2.2589, 0.0917, 0.0006
)

V =


 0.9507 −0.3099 0.0085

0.3076 0.9398 −0.1488
0.0381 0.1441 0.9888


 .

Step 4.

Σ
1
2 = diag(1.5030, 0.3028, 0.0248).

230

Step 5. The transforming matrix T is:

T = LcV Σ−1
2 =


 −1.2532 2.0277 0.6775

−0.3835 −0.5914 −1.9487
−0.2234 −0.7604 1.2131


 .

Step 6. The balanced matrices are:

Ã = T−1AT =


 −0.7659 0.5801 −0.0478

−0.5801 −2.4919 0.4253
0.0478 0.4253 −2.7422


 .

Verify:

T−1CGT−T = TTOGT = Σ = diag(2.2589, 0.0917, 0.0006).

231

Computational Remarks:

• The explicit computation of the product LT
o Lc

can be a source of round-off errors. The
small singular values might be almost wiped out by
the rounding errors in forming the explicit product
LT

o Lc. It is suggested that the algorithm of Heath et
al. (1986), that computes the singular values of a
product of two matrices without explicitly forming
the product, be used in practical implementation of
this algorithm.

232

MATLAB NOTES: The MATLAB function in the
form:

SYSB = balreal (sys)

returns a balanced realization of the system (A, B,C).
The use of the function balreal in the following format:

[SYSB, G, T, TI] = balreal (sys)

returns, in addition to Ã, B̃, C̃, of the balanced system,
a vector G containing the diagonal of the Grammian of
the balanced realization. The matrix T , the matrix of
the similarity transformation that transforms (A, B,C)
to (Ã, B̃, C̃) and TI is its inverse.

MATCONTROL NOTES: Algorithm 14.2.1 has
been implemented in MATCONTROL function balsvd.

233

• The Square-Root Algorithm (Algorithm
14.2.2)

(Balanced Realization of a continous-time nommianial re-
alization).

MATCONTROL Function: balsqt

234

Software for Balanced Realization

• MATLAB Function - balreal (works with SYS)

• MATCONTROl Function - balsvd (works with ma-
trices) and balsqt (works with matrices).

235

Model Reduction via Balanced Truncation

Idea: Eliminate the less controllable and less observable
states.

• Discard the small Hankel singular values

236

Algorithm for Model Reduction via Balanced
Truncation (Chapter 14.4.1)

Step 1. Choose q, the order of ROM

• q = Σd
i=1si

• si = the multiplicity of σi

Assume σd >> σd+1.

Step 2. Partition the balanced model (Ã, B̃, C̃) conformably:

Ã =

(
AR A12

A21 A22

)

B̃ =

(
BR

B2

)
C̃ = (CR, C2).

AR ∈ R
q×q, BR and CR are similar.

Step 3. ROM = (AR, BR, CR).

237

Properties of the Reduced Order Model

• ROM (AR, BR, CR) is Stable.

• ROM by the Balanced Truncation Method does not
minimize ||G(s) − G(R)(s)||∞. Only gives an up-
per bound.

• ||G(s) − GR(s)||∞ ≤ 2(σd+1 + . . . + σN).

N - The numbers of distinct singular values

• If d = N − 1, ||G(s) − GN−1(s)||∞ = 2σN.

238

Example 14.4.1 Consider Example 14.2.1 once more.
Choose q = 2. Then AR = The 2 × 2 leading principal
submatrix of Ã is :

AR =

(−0.7659 0.5801
−0.5801 −2.4919

)
.

The eigenvalues of AR are: −0.9900, and − 2.2678.
Therefore AR is stable.
The matrices BR and CR are:

BR =

(−1.8602
−0.6759

)
, CR = (−1.8602, 0.6759).

Let GR(s) = CR(sI − AR)−1BR.

Verification of the Error Bound: ‖G(s) − GR(s)‖∞ =
0.0012. Since 2σ3 = 0.0012, the error bound given by
(14.4.4) is satisfied.

239

Numerical Stability of the ROM via BT

• Transforming Matrix T can be highly ill-conditioned.
Example

(
A B
C O

)
=




−1

2
−ε ε

0 −1

2
1

1 ε 0




T =



√

1

ε
0

0
√

ε


 .

• As ε → 0, Cond (T) → ∞.

240

The Schur Method for Model Reduction

• No Balancing

• Only Orthogonal matrices used in transformations.

• Based on transformation of FOM using the RSF of
CGOG :

Y = XTCGOGX = Real Schur Form (ordered)

Idea: Compute the orthonormal bases of the right
and left invariant subspaces corresponding to the large
eigenvalues of the matrix CGOG by finding the ordered
real schur form.

241

The Schur Method for Model Reduction
(Algorithm 14.4.2)

Step 1. Find the RSF of the product CGOG : XTCGOGX =
Y

Step 2. Reorder:
Ascending Order:

UTY U =




λ1 ∗
. . .

0 λn




Descending Order:

V TY V =




λn ∗
. . .

0 λ1




λ1 ≤ λ2 ≤ . . . ≤ λn.

242

Step 3. Partition

U = (US, UT)
V = (VS, VT)

• US - contains first n − q columns of U

• VS - contains q columns of V .

243

Step 4. Find SVD of UT
T VS

UT
T VS = QΣRT

Step 5. Compute the transforming Matrices

S1 = UTQΣ−1
2

S2 = VTRΣ−1
2

Step 6. Compute ROM = (AR, BR, CR):

AR = ST
1 AS2

BR = ST
1 B

CR = CS2.

(No matrix inversion for the transforming ma-
trix)
• MATCONTROL Function: modreds

244

Comparison and Recommendation

• Model Reduction via Balanced Truncation is a stan-
dard procedure.

• Works well for well-equilibrated systems.

• Use the Schur method only in case of severe ill-conditioning.

245

Software for Balancing and Model Reduction

• MATLAB Control System Toolbox

• balreal - Grammian based balancing

• modred - model reduction

MATCONTROL

• BALSVD - Internal Balancing using the SVD.

• BALSQT - Square Root Algorithm for Balancing

• MODREDS - Model Reduction using the Schur Method

• HNAPX - Hankel-Norm Approximation.

246

CSP - ANM

• The Schur Method
Dominant Subsystem [System, Method → Schur De-
composition].

• The Square-Rood Method
Dominant Subsystem [System, Method→ Square Root].

247

System Identification

(Chapter 9)

248

State-Space Realization

Given the transfer function G(s) of order
r × m, find the matrix A, B,C, and D
such that

G(s) = C(sI − A)−1B + D.

• Minimal Realization (MR) : (A, B) is control-
lable and (A, C) is observable.

• McMillan Degree: The dimension of an MR is
called the McMillan Degree.

249

Given a large number of Markov
Parameters

Hk = CAk−1B, k = 1, 2, . . .

Find the minimal realization (A, B,C,D) of
G(s).

• Markov Parameters are easier to compute for a discrete-
time system.

250

Hankel Matrix of Markov Parameters

Mk =




H1 H2 · · · Hk

H2 H3 · · · Hk+1

...

Hk Hk+1 · · · H2k−1




251

An SVD Algorithm for Minimal Realization

(Algorithm 9.3.1)

Inputs: The set of Markov parameters: {H1, H2, · · · , H2N+1}
(N should be at least equal to the McMillan degree).

Outputs: The matrices A, B, and C of a minimal
realization.

Step 1. Find the SVD of the Hankel matrix

MN+1 =




H1 H2 · · · HN+1

H2 H3 · · · HN+2
...

HN+1 HN+2 · · · H2N+1


 = USV T ,

where S = diag (s1, s2, · · · , sp, 0, · · · 0),
and s1 ≥ s2 ≥ · · · ≥ sp > 0

Step 2. Form U ′ = US
1
2 and V ′ = S

1
2V T , where

S
1
2 = diag(s

1
2
1, s

1
2
2 , . . . , s

1
2
p, 0, · · · , 0).

252

Step 3. Define
U1 = The first N block rows and the first p columns of U ′

U2 = The last N block rows and the first p columns of U ′

U (1) = The first block row and the first p columns of U ′

V (1) = The first p rows and the first block column of V ′.

Step 4. Compute A = U †
1U2, Set B = V (1), C = U (1).

�

253

Theorem 9.3.2 (Kung) Let Ei denote the error matrix;
that is,

Ei = CAi−1B − Hi, i ≥ 1.

Assume that the given impulse response sequence {Hk}
is
convergent. That is, Hk → 0, when k → ∞.
Then

•
2N+1∑
i=1

‖ Ei ‖2
F≤ ε

√
n + m + r, where ε is a small

positive number, and n,m and r are, respectively,
the number of states, inputs and outputs.

254

Properties of MR by Algorithm 9.3.1

• The minimal realization obtained by Algorithm 9.3.1
is (a) discrete-stable and (b) internally balanced;
that is, the controllability and observability Grammi-
ans for this realization are the same and are equal to
a diagonal matrix.

MATCONTROL Function: minresvd

255

Example 9.3.1 Let N = 2 and the given set of Markov
parameters be:

{H1, H2, H3, H4, H5} = {3, 5, 9, 17, 33}.

Step 1. M3 =


 3 5 9

5 9 17
9 17 33


. Then

U =


 0.2414 −0.8099 0.5345

0.4479 −0.3956 −0.8018
0.8609 0.4330 0.2673


 ,

S = diag (44.3689 0.6311 0), and

V T =


 0.2414 0.4479 0.8609

−0.8099 −0.3956 0.4330
0.5345 −0.8018 0.2673


 .

Step 2. U ′ =


 1.6081 −0.64340 0

2.9835 −0.31430 0
5.7343 0.34400 0


,

V ′ =


 1.6081 2.9835 5.7343

−0.6434 −0.3143 0.3440
0 0 0


 .

256

Step 3.

U1 =

(
1.6081 −0.6434
2.9835 −0.3143

)

U2 =

(
2.9835 −0.3143
5.7343 0.3440

)
.

U (1) = (1.6081 − 0.6434)

V (1) =

(
1.6081
−0.6434

)
.

Step 4.

A = U †
1U2 =

(
1.9458 0.2263
0.2263 1.0542

)

B = V (1) =

(
1.6081
−0.6434

)
C = U (1) = (1.6081 − 0.6434).

257

10
−2

10
−1

10
0

10
1

10
2

−20

−10

0

10

20

30

40

50

60

Frequency (rad/sec)

M
ag

ni
tu

de
 (

dB
)

| G
0
 (j w) |

 | G (j w) |

Comparison of Transfer Functions

258

A Modified SVD Algorithm for Minimal Real-
ization

• There exists a modified SVD algorithm for minimal
realization (Algorithm 9.3.2)

• The modified algorithm requires lower order block
Hankel Matrices in computing the matrices A, B,
and C

• MATCONTROL function minremsvd implements
this algorithm

259

Subspace Identification

Given a large number of input and output mea-
surements, uk and yk, determine the order n of
the unknown system and the system matrices
(A,B,C,D) up to within a similarity transfor-
mation.

260

An SVD-Based Subspace Identification
Algorithm

Hk|k+i =




uk uk+1 · · · uk+j−1

yk yk+1 · · · yk+j−1

uk+1 uk+2 · · · uk+j

yk+1 yk+2 · · · yk+j
...

uk+i−1 uk+i · · · uk+i+j−2

yk+i−1 yk+i · · · yk+i+j−2




Hk+i|k+2i =




uk+i uk+i+1 · · · uk+i+j−1

yk+i yk+i+1 · · · yk+i+j−1

uk+i+1 uk+i+2 · · · uk+i+j

yk+i+1 yk+i+2 · · · yk+i+j
...
...

uk+2i−1 uk+2i · · · uk+2i+j−2

yk+2i−1 yk+2i · · · yk+2i+j−2




261

Algorithm 9.4.1 (A Deterministic Subspace
Identification Algorithm).

Inputs: The input and output sequence {uk} and
{yk}, respectively. The integers i ≥ n, where n is
the order of the sys tem to be identified and j.
Outputs: The identified system matrices A, B,C and
D.
Assumptions:

1. The system is observable.

2. The integers i and j are sufficiently large, and in
particular j >> max(mi, ri), where m and r are
the number of inputs and outputs.

262

Step 1. Calculate U and S from the SVD of H,
where

H =

(
Hk|k+i

Hk+1|k+2i

)
:

H = USV T =

(
U11 U12

U21 U22

)(
S11 0
0 0

)
V T

(Note that the dimensions of U11, U12 and S11 are, re-
spectively, (mi + ri)× (2mi + n); (mi + ri)× (2ri−n);
and (2mi + n) × (2mi + n)).

Step 2. Calculate the SVD of UT
12U11S11 :

UT
12U11S11 = (Uq, U

⊥
q)

(
Sq 0
0 0

)(
V T

q

V ⊥T

q

)

263

Step 3. Solve the following set of linear equations for
A, B,C and D (in the least-squares sense):(

UT
q UT

12U (mi + ri + 1 : (m + r)(i + 1), :)S
U (mi + ri + m + 1 : (m + r)(i + 1), :)S

)

=

(
A B
C D

)(
UT

q UT
12U (1 : mi + ri :)S

U (mi + ri + 1 : mi + ri + m, :)S

)

264

Some Selected Software

9.5.1 MATLAB CONTROL SYSTEM TOOL-
BOX
State-space models
minreal - Minimal realization and pole/zero cancella-
tion.
augstate - Augment output by appending states.
9.5.2 MATCONTROL
MINRESVD - Finding minimal realization using sin-
gular value decomposition of Hankel matrix of Markov
parameters
(Algorithm 9.3.1)
MINREMSVD - Finding minimal realization using
singular value decomposition of Hankel matrix of lower
order (Algorithm 9.3.2)

9.5.3 CSP-ANM
Model identification

• The system identification from its impulse responses is
performed by ImpulseResponseIdentify [response].

• The system identification from its frequency responses
is performed by FrequencyResponseIdentify [re-
sponse].

• The system identification directly from input-output
data is performed by OutputResponseIdentify [u, y].

265

9.5.4 SLICOT

Identification

IB - Subspace Identification
Time Invariant State-space Systems

IB01AD Input-output data preprocessing and
finding the system order

IB01BD Estimating the system matrices,
covariances, and Kalman gain

IB01CD Estimating the initial state and
the system matrices B and D

TF - Time Response

TF01QD Markov parameters of a system from
transfer function matrix

TF01RD Markov parameters of a system
from state-space representation

In addition to the above mentioned software, the fol-
lowing toolboxes, especially designed for system iden-
tification are available.

266

• MATLAB System Identification Toolbox, de-
veloped by Prof. Lennart Ljung.
(Website: http://www.mathworks.com)

• ADAPTX, developed by W. E. Larimore.
(Website: http://adaptics.com)

• Xmath Interactive System Identification Mod-
ule, described in the manual X-Math Interactive Sys-
tem Identification Module, Part 2, by P. VanOver-
schee, B. DeMoor, H. Aling, R. Kosut, and S. Boyd,
Integrated Systems Inc., Santa Clara, California, USA,
1994
(website: http://www.isi.com/products/MATRIXX/

Techspec/MATRIXX-Xmath/xm36.html, -/MATRIXX

XMATH/inline images/pg. 37 img.html and -/MATRIXX-
XMath/inlineimages/pg. 38img.html).

For more details on these software packages, see the
paper by DeMoor, Van Overschee and Favoreel (1999).

267

Control Software
(Appendix A)

268

Information on

Existing Control Software

• MATLAB Control Systems Toolbox.
Built on MATLAB. Implements some of the best known
numerical algorithms for control problems.

only one algorithm for each problem

Information: http://www.mathworks.com

269

• Control Systems Professional-Advanced Nu-
merical Methods

Based on Mathematica

A collection of Mathematica programs to solve control
problems. Extends the slope of the existing CSP by
adding the state-of-the-art numerical methods form
the book:

Numerical Methods for Linear Control Systems De-
sign and Analysis by B. N. Datta

Information:
http://www.wolfram.com/products/applications/anm

270

• MATCONTROL

A collection of M-files implementing major algorithms
of the book “Numerical Methods for Linear Control
Systems Design and Analysis” by B.N. Datta

A useful educational toolbox. The students,
the instructors and the researchers will be able to
compare different algorithms for the same problem
with respect to efficiency, stability, accuracy, and
easiness-to-use and specific design and analysis re-
quirements.

271

Listing of MATCONTROL Files

(Appendix B)

272

B.2 CHAPTER-WISE LISTING OF
MATCONTROL FILES

Here is the Chapter-wise listing of MATCONTROL files.

Reference: Numerical Algorithms for Linear
Control Systems

Design and Analysis, by B.N. Datta.

Chapter 5: Linear State Space Models and So-
lutions of the State Equations

* EXPMPADE - The Padé approximation to the exponential
of a matrix (Algorithm 5.3.1)

* EXPMSCHR - Computing the exponential of a matrix
using Schur decomposition (Algorithm
5.3.2)

EXMPHESS - Computing the exponential of a matrix us-
ing Hessenberg decomposition

* FREQRESH - Computing the frequency response matrix
using Hessenberg decomposition (Algo-
rithm 5.5.1)

INTMEXP - Computing an integral involving a matrix
exponentials

∗ Most important ones discussed in this
workshop.

273

Chapter 6: Controllability, Observability and
Distance to Uncontrollability

* CNTRLHS - Finding the controller-Hessenberg form
(Algorithm 6.7.1)

∗ OBSERHS - Finding the observer-Hessenberg form
(Section 6.8)

CNTRLC - Finding the controller canonical form
(Lower Companion)

DISCNTRL - Distance to controllability using
the Wicks-DeCarlo algorithm

274

Chapter 7: Stability, Inertia and Robust Stability

* INERTIA - Determining the inertia and stability of
a matrix without solving a matrix equa-
tion or computing eigenvalues (Algorithm
7.5.1)

H2NRMCG - Finding H2-norm using the
controllability Grammians

H2NRMOG - Finding H2-norm using the observability
Grammian

∗ DISSTABC - Determining the distance to the continuous-
time stability (Algorithm 7.6.1)

∗ DISSTABD - Determining the distance to the discrete-
time stability (Algorithm 7.6.2)

∗ ROBSTAB - Robust stability analysis using Lyapunov
equations

275

Chapter 8: Numerical Solutions and Conditioning
of Lyapunov and Sylvester Equations

* CONDSYLVC - Finding the condition number of the
Sylvester equation problem (Section 8.3)

* LYAPCHLC - Finding the Cholesky factor of the positive
definite solution of the continuous-time Lya-
punov equation (Algorithm 8.6.1)

* LYAPCHLD - Finding the Cholesky factor of the positive
definite solution of the discrete-time Lya-
punov equation (Algorithm 8.6.2)

LYAPCSD - Solving the discrete-time Lyapunov equa-
tion using complex-Schur decomposition of
A

LYAPFNS - Solving the continuous-time Lyapunov
equation via finite series method

LYAPHESS - Solving the continuous-time Lyapunov
equation via Hessenberg decomposition

* LYAPRSC - Solving the continuous-time Lyapunov
equation via real-Schur decomposition
(Section 8.5.2)

* LYAPRSD - Solving the discrete-time Lyapunov equa-
tion via real-Schur decomposition

276

* SEPEST - Estimating the sep function with triangular
matrices

* SEPKR - Computing the sep function using Kro-
necker product

* SYLVHCSC - Solving the Sylvester equation using Hes-
senberg and complex Schur decompositions
(Algorithm 8.5.2)

SYLVHCSD - Solving the discrete-time Sylvester equation
using Hessenberg and complex-Schur de-
compositions

SYLVHESS - Solving the Sylvester equation via Hessen-
berg decomposition

* SYLVHRSC - Solving the Sylvester equation using Hessen-
berg and real Schur decompositions

SYLVHUTC - Solving an upper triangular Sylvester equation

277

Chapter 9: Realization and Subspace Identifi-
cation

* MINRESVD - Finding minimal realization using singular
value decomposition of the Hankel matrix
of Markov parameters (Algorithm 9.3.1)

* MINREMSVD - Finding minimal realization using singular
value decomposition of a Hankel matrix of
lower order (Algorithm 9.3.2)

Chapter 10: Feedback Stabilization, Eigenvalue
Assignment, and Optimal Control

* STABLYAPC - Feedback stabilization of continuous-time
system using Lyapunov equation (Section
10.2.2)

* STABLYAPD - Feedback stabilization of discrete-time sys-
tem using Lyupunov equation (Section
10.2.2)

* STABRADC - Finding the complex stability radius us-
ing the bisection method (Algorithm
10.7.1)

* HINFNRM - Computing H∞-norm using the bisection
method (Algorithm 10.6.1)

278

Chapter 11: Numerical Methods and Condition-
ing of the EVA Problems

* POLERCS - Single-input pole placement using the recur-
sive algorithm

POLEQRS - Single-input pole placement using the QR
version of the recursive algorithm

* POLERQS -Single-input pole placement using RQ ver-
sion of the recursive algorithm

* POLERCM - Multi-input pole placement using the recur-
sive algorithm (Algorithm 11.3.1)

* POLERCX - Multi-input pole placement using the mod-
ified recursive algorithm that avoids com-
plex arithmetic and complex feedback.
(Algorithm 11.3.1)

* POLEQRM - Multi-input pole placement using the ex-
plicit QR algorithm (Section 11.3.2)

POLESCH - Multi-input pole placement using the Schur
decomposition (Algorithm 11.3.3)

∗ POLEROB - Robust pole placement (Algorithm
11.6.1)

279

Chapter 12: State Estimation: Observer and
Kalman Filter

* SYLVOBSC - Solving the constrained multi-output
Sylvester-observer equation

* SYLVOBSM - Solving the multi-output Sylvester-observer
equation

* SYLVOBSMB - Block triangular algorithm for the multi-
output Sylvester-observer equation

280

Chapter 13: Numerical Solutions and Condition-
ing of the Algebraic Riccati Equa-
tions

RICEIGC - The eigenvector method for the continuous-
time Riccati equation

* RICSCHC - The Schur method for the continuous-time
Riccati equation (Algorithm 13.5.1)

RICSCHD - The Schur method for the discrete-time Ric-
cati equation

RICGEIGD - The generalized eigenvector method for the
discrete-time Riccati equation

* RICNWTNC - Newton’s method for the continuous-time
Riccati equation (Algorithm 13.5.8)

* RICNWTND - Newton’s method for the discrete-time Ric-
cati equation (Algorithm 13.5.8)

281

RICSGNC - The matrix sign-function method for the
continuous- time Riccati equation (Algo-
rithm 13.5.6)

RICSGND - The matrix sign-function method for
the discrete-time Riccati equation (Algo-
rithm 13.5.7)

* RICNWLSC - Newton’s method with line search for the
continuous-time Riccati equation (Algo-
rithm 13.5.9)

* RICNWLSD - Newton’s method with line search for
the discrete-time Riccati equation (Algo-
rithm 13.5.1)

Chapter 14: Internal Balancing and Model Re-
duction

* BALSVD - Internal balancing using the singular value
decomposition (Algorithm 14.2.1)

BALSQT - Internal balancing using the square-root al-
gorithm (Algorithm 14.2.2)

∗ MODREDS - Model reduction using the Schur method
(14.4.2)

∗ HNAPRX - Hankel norm approximation (Algorithm
14.5.1)

282

A Case Study:
Control of a 9-State
Ammonia Reactor

(Appendix C)

283

CASE STUDY: Control of a 9-state

Ammonia Reactor
C1. Introduction

• System Matrices

A =


−4.019 5.12 0. 0. −2.082 0. 0. 0. 0.870
−0.346 0.986 0. 0. −2.340 0. 0. 0. 0.970
−7.909 15.407 −4.069 0. −6.450 0. 0. 0. 2.680
−21.816 35.606 −0.339 −3.870 −17.800 0. 0. 0. 7.390
−60.196 98.188 −7.907 0.340 −53.008 0. 0. 0. 20.400

0. 0. 0. 0. 94. −147.200 0. 53.200 0.
0. 0. 0. 0. 0. 94. −147.200 0. 0.
0. 0. 0. 0. 0. 12.800 0. −31.600 0.
0. 0. 0. 0. 12.800 0. 0. 18.800 −31.600




284

B =


 0.010 0.003 0.009 0.024 0.068 0. 0. 0. 0.
−0.011 −0.021 −0.059 −0.162 −0.445 0. 0. 0. 0.
−0.151 0. 0. 0. 0. 0. 0. 0. 0.


T

C =


 0. 0. 0. 0. 0. 0. 1. 0. 0.

0. 0. 0. 0. 0. 0. 0. 1. 0.
0. 0. 0. 0. 0. 0. 0. 0. 1.


 ,

D =


 0. 0. 0.

0. 0. 0.
0. 0. 0.


 .

285

C2. Testing the controllability via Reduction
to Controller-Hessenberg Form

• MATCONTROL function cntrlhs

tol = 1e-13;
info = cntrlhs(A, B, tol)
info = 1

Conclusion: The system is controllable.

286

C3. Testing the Observability via Reduction
to Observer-Hessenberg Form

• MATCONTROL function obserhs

info = obserhs(A, C, tol)
info = 1

Conclusion: The System is observable.

287

C4. Testing the stability by finding the Eigen-
values

• MATLAB function eig :

{−147.2000 , −153.1189 , −56.0425 , −37.5446 ,
−15.5478 , −4.6610 , −3.3013 , −3.8592, −0.3047} .

Conclusion: The system is asymptotically
stable but it has a small eigenvalue λ =
−0.3047 (relative to the other eigenvalues).

288

C5. Lyapunov Stabilization.

• MATCONTROL function stablyapc

beta = norm(A,’fro’);
beta = 292.6085.
K−lyap = stablyapc(A,B,beta)

The feedback matrix K−lyap:

K−lyap =

102




−3.3819 −0.2283 −56.4126
5118.1388 1207.4106 15424.1947

−237858.9775 −57713.9866 −997148.5316
−544.7145 220.0287 15199.8829
31495.6810 7491.5724 125946.2030
−4510.0481 20403.0258 −5516.3430

85.8840 −495.7330 40.1441
−39007.7960 182650.2401 −43969.5212
38435.8476 −150078.6710 61412.4200




.

289

The eigenvalues of the corresponding closed-loop ma-
trix are:

{−292.6085 ± 644.6016i,−292.6085 ± 491.8461i,

−292.6085±145.4054i,−292.6085±49.3711i,−292.6085}.
Note that these close-loop eigenvalues now
are much further to the left of the complex
plane than the open-loop ones.

290

C6. Pole-Placement Design. Move all the above
nine eigenvalues to the negative real-axis with equal spac-
ing in the interval [−||A||F/9,−||A||F)].

• MATCONTROL function polercm

eig−rcm=-[1:9]*beta/9;
K−rcm = polercm (A,B, eig−rcm).

The feedback matrix K−rcm

105 [
−0.1088 14.0002 −1358.6004 17.6295 171.8716 1.2245 0.0034 4.8847 −5.8828
−0.0153 2.1371 −207.6062 2.6939 26.2618 0.1865 0.0005 0.7408 −0.8998
−0.0357 −0.5495 −74.6029 1.3318 9.3685 0.0670 0.0002 0.2666 −0.3206

] .

The eigenvalues of the corresponding closed-loop matrix
are:

{−292.6085,−260.0965,−227.5844,−195.0724,−162.5603,
−130.0482,−97.5362,−65.0241 and −32.5121}.

291

C7. The LQR and LQG Designs
LQR Design

Optimal control-law: u0(t) = K−lqrx(t)

• MATLAB function lqr with R = eye(3), N = zeros(9, 3),
and Q = eye(9) gives

K−lqr = lqr(A, B,Q,R, N)

The optimal gain matrix K−lqr is:

10−1 [
0.1187 0.0728 0.0228 0.0012 −0.0007 0.0018 0.0003 0.0042 0.0044
0.2443 −0.3021 0.0084 −0.0465 −0.0673 −0.0138 −0.0023 −0.0464 −0.0439
−2.8408 −0.5942 −0.4540 0.0855 0.2102 0.0061 0.0003 0.0496 0.0378

] .

The eigenvalues of the corresponding closed-loop system
are:

{−153.1201 , −147.1984, −56.0452, −37.5442,
−15.5463, −4.6789, −3.3090 , −3.8484, and −0.3366 }.
Note that these closed-loop eigenvalues are quite
close to the open-loop ones. Also, ||K−lqr|| is
much smaller than that of ||K−rcm||.

292

LQG Design

ẋe = Axe + Bu + L(ym − Cxe − Du)

• MATLAB functions kalman and lqgreg gives

sysA = ss(A,B,C,D);
Qn = 1E-3 *eye(3); Rn =
1E-3 *eye(3);
[K−est, L] =
kalman(sysA,Qn,Rn)

The filter gain matrix L is:

10−3
[

−0.0007 1.0703 1.6155 1.9729 2.8499 2.1636 1.3816 0.7990 1.5340
0.0176 0.6284 0.9780 1.1679 1.5765 1.2251 0.7990 0.4962 0.9469
0.0349 1.2163 1.8921 2.2676 3.0810 2.3701 1.5340 0.9469 1.8112

]T

293

Using the matrices K−est and L, the LQG regulator can
now be designed. The MATLAB command for finding an
LQG regulator is lqgreg.

RLQG = lqgreg(K−est, K−lqr)

The resulting regulator RLQG has input ym and the out-
put u = −K−lqrx−e as shown below:

u

ym

K−est x−e −K−lqr
u

294

0 0.5 1 1.5 2 2.5 3
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

time t

no
rm

 o
f t

he
 r

es
po

ns
e

in
 lo

g
sc

al
e

open−loop IR
Lyapunov
pole placement
LQR design
LQG design

Figure 1: Comparison of the Impulse Responses.

295

C8. State-Estimation (Observer): Kalman
Estimator vs. Sylvester Equation Estimator

296

MATCONTROL Function: sylvobsmb

sylvobsmb implements Algorithm 12.7.2 (A Recursive
Block Triangular Algorithm) for this purpose, is used
here. The observer eigenvalues: ev = [−2,−4±2i,−5,−6,−7]T .

[X, F,G] = sylvobsmb(A, C, ev)

X =

[
−5734.5147 5470.8582 −1106.8206 52.2506 287.3781 0. 0. 0. 727.5156
−8.4146 13.4543 −0.0962 −0.0139 −0.5931 0. 0. 0. −1.2949
6.8075 −9.1950 0.8500 −0.0354 0.2121 0. 0. 0. 0.5729
0.5214 −0.8505 0.0685 −0.0029 0.0782 0. 0. 0. 0.2327

0. 0. 0. 0. 1. 0. −0.0213 0. 3.1234
0. 0. 0. 0. 0. 1. 1.5234 0. −7.1875

]

297

F =




−2. 0. 0. 0. 0. 0.
−0.0042 −5. 0. 0. 0. 0.

0. 0.2435 −6. 0. 0. 0.
0. 0. −0.4901 −7. 0. 0.
0. 0. 0. −115.4430 −4. −2.
0. 0. 0. 0. 2. −4.




G = 101
[

0. 0. 0. 0. 0.6094 −21.8109
1367.7293 −2.4345 1.0771 0.4375 5.8721 −8.1925
−1793.4391 3.0741 −1.1006 −0.4058 −5.3316 19.2128

]T
Error X : ‖XA − FX − GC‖F = 1.2246 · 10−11.

298

Figure 2 shows the comparison of relative er-
rors, between actual and estimated states in
tow cases: Kalman estimator and Sylvester-equation
estimator. The quantity plotted is

r(t) =
||x(t) − x̂(t)||

||x(t)||
where x̂(t) is the estimate given by the estimator in each
case.

299

0 2 4 6 8 10 12 14 16 18 20
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

time t

re
la

tiv
e

er
ro

r
be

tw
ee

n
ex

ac
t a

nd
 e

st
im

at
ed

 s
ta

te
s

(lo
g

sc
al

e)
Kalman estimator
Sylvester−observer

Figure 2: Comparison between Kalman and Sylvester-observer Estimations.

The plot show that error in the Sylvester-observer
estimator approaches to zero faster than the
Kalman estimator as the time increases.

300

C9. System Identification and Model Reduc-
tion

• Transfer Function:

H(s) = C(sI − A)−1B =
∞∑
i=1

CAiB

si
.

• Markov parameters:

Hi = CAiB, i = 1, 2, 3, . . .

• The frequency response function: G(jω) = H(jω)
where ω is a nonnegative real number and j =

√−1.

• MATCONTROL functions minresvd and minremsvd:
[A s,B s,C s] = minresvd(4,[H1 H2 H3 H4 H5 H6 H7
H8 H9],1e-8);

N = 4, tol = 1e-13
[A−s, B−s, C−s] = minresvd
(N,H−i, tol);
[A−r, B−r, C−r] = modreds
(A−s, B−s, C−s, 9)

301

Comparisons of Frequency Response
Functions

• Original Model

• Model by SVD Algorithm (Algorithm 9.3.1)

• Model by Modified SVD Algorithm (Algorihtm
9.3.2)

• SVD Model followed by Model Reduction

omega=1:.1:100;
G = freqresh(A,B,C,omega);
G s = freqresh(A s,B s,C s,omega);
G sm = freqresh(A sm,B sm,C sm,omega);
G r = freqresh(A r,B r,C r,omega)

302

0 10 20 30 40 50 60 70 80 90 100
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

frequency w

m
ag

ni
tu

de
 o

f e
nt

ry
 (

1,
1)

 o
f G

(i*
w

),
 in

 lo
g

sc
al

e
original
identified by SVD
identified by modified SVD
identified SVD + model reduction

Figure 3: C.3 Comparison Between Frequency Responses.

303

Bibliography:

1. P. Benner, A. Laub and V. Mehrmann, A Collection
of benchmark examples for the numerical solution
of algebraic Riccati equations I: continuous-time
case. Technische Universität Chemnitz-Zwickau,
SPC Report 95-22, 1995.

2. L. Patnaik, N. Viswanadham and I. Sarma, Com-
puter control algorithms for a tubular ammonia
reactor. IEEE Trans. Automat. Control, AC-25,
pp. 642-651, 1980.

304

H∞-Control

305

Goal of H∞-Control: Stabilize a Perturbed version
of a system, assuming certain bounds for perturbations.

306

Problem Statement

Given

ẋ(t) = Ax(t) + B1w(t) + B2u(t)1

z(t) = C1x(t) + D12u(t)2

y(t) = C2x(t) + D21w(t)3

• x(t) - The state vector

• w(t) - The disturbance signal

• u(t) - The control input

• z(t) - The controlled output

• y(t) - The measured output

Find a controller K(s) such that ||Tzw(s)|| < γ, for a
give positive number γ.

307

• Tzw(s) = Transfor Function from the disturbance w
to the output z

= G11 + G12K(I − G22K)−1G21

• G(s) =

(
0 D12

D21 0

)
+

(
C1

C2

)
(SI − A)−1(B1, B2)

=

[
G11 G12

G21 G22

]
.

308

Assumptions

• (A, B1) is stabilizable and (A, C1) is detectable

• (A, B2) is stabilizable and (A, C2) is detectable

• DT
12(C11D12) = (0, I)

•
(

B1

D21

)
DT

1 =

(
0
I

)

309

H∞-Theorem: A solution exists if and only if there
exist symmetric positive semidefinite stabilizing solutions
X and Y , respectively to the pair of ARES:

XA + ATX − X

(
B2B

T
2 − 1

γ2
B1B

T
1

)
X + C1C

T
1 = 0

AY + Y AT − Y

(
CT

2 C2 − 1

γ2
CT

1 C1

)
Y + B1B

T
1 = 0

• A Controller is given by

K(s) = −F (sI − Â)−1ZL

where

• Â = A +
1

γ2
B1B

T
1 X + B2F + ZLC2

• F = −BT
2 X

• Z = (I − 1

γ2
Y X)−1.

310

MATLAB Implementation

The function care can be used.
Write

ATX + XA − X(B2B
T
2 − 1

γ2
B1B

T
1)X + CT

1 C1 = 0

in the form

ATX+XA−X(B1, B2)

(−γ−2I 0
0 I

)−1(
BT

1

BT
2

)
X+CT

1 C1 = 0.

311

Example

A = a, B1 = (1, 0), B2 = b2

C1 =

(
1
0

)
, D12 =

(
0
1

)
C2 = c2, D21 = (0, 1).

• Assumptions are satisfied.

Take a = −1, b2 = c2 = 1, γ = 2.

• Tzw =


 −1.7321 1 −0.7321

1 0 0
−0.7321 0 −0.7321


 .

• ||Tzw||∞ = 0.7321 < γ = 2.

312

H∞ - Norm Algorithms.

• A Bisection Algorithm (Algorithm 10.6.2) (Boyd,
et al. (1989)).

• Two-step Algorithm (MATLAB Command: norm
(sys, inf))

313

Bisection Algorithm (Algorithm 10.6.1)

Mγ =

(
A + BR−1DTC BR−1BT

−CT (I + DR−1DT)C −(A + BR−1DTC)T

)

R = γ2I − DTD.

Theorem. Let G(s) be the stable transfer function.
Then ||G(s)||s < γ if and only if σmax(D) < γ and Mγ

has no imaginary eigenvalues.

MATCONTROL Function: hinfnrm.

314

