Which graphs are divisor graphs?
 Varaporn Saenpholphat
 Department of Mathematics
 Srinahkarinwirot University
 Bangkok, Thailand

Abstract

For a finite nonempty set S of positive integers, the divisor graph $G(S)$ of S has vertex set S and two vertices i and j of $G(S)$ are adjacent if i divides j or j divides i, while the divisor digraph $D(S)$ of S has vertex set S and (i, j) is an arc of $D(S)$ if $i \mid j$. A graph G is a divisor graph if there exists a set S of positive integers such that S is isomorphic to $G(S)$. It is shown that a triangle-free graph is a divisor graph if and only if it is bipartite. Also GK2 is a divisor graph if and only if G is bipartite. A vertex v in an oriented graph D is a transmitter if id $v=0$, a receiver if od $v=0$, and a transitive vertex if id $v, \operatorname{od} v>0$ and for every $u \in N^{-}(v)$ and $m \in N^{+}(v),(u, w) \in E(D)$. It is shown that a graph G is a divisor graph if and only if there exists an orientation D of G such that every vertex of D is a transmitter, a receiver, or a transitive vertex.

