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Motivation

e [ heories of continuous-time control sys-
tems and discrete-time control systems
consist of similar results.

For example, controllability of

r = Ax + Bu and a:+=A:U—|-Bu

where z1T(¢t) = z(¢t + 1), is given by the
same condition:

rank(B, AB, ..., A" 1B) = n.



e There is need for a common language
that would allow for unification of both
theories.

e Calculus on time scales unifies theory of
differential equations and difference equa-
tions (Stefan Hilger, 1988). It can serve
as a unifying language for control theory.

e [ime scales allow to model systems for
which time is partly continuous and partly
discrete.



Calculus on time scales

A time scale T is an arbitrary nonempty closed
subset of the set R of real numbers. The
standard cases comprise T=R, T=24Z, T =
hZ, for h > 0.

Define

the forward jump operatoro : T—T by o(t) : =
inf{s eT:s >t}

the backward jump operator p : T—T by p(t) 1=
sup{s € T : s < t};

the graininess function u : T—[0,00) by u(t) :=
o(t) —t.



If o(t) > t, we say that t is right-scattered,
while if p(t) < t we say that t is left-scattered.
Ift <supT and o(t) = ¢, then t is called right-

dense; if t > infT and p(t) =t then t is called
left-dense.

Finally we define the set

Tk . — T\ {supT} if p(supT) <supT < oo
T otherwise



Example 1.If T = R, then for any ¢t € R,
o(t) =t = p(t); the graininess function u(t) =
0.

If T = Z then for every t € Z, o(t) =t + 1,
p(t) =t —1; the graininess function u(t) = 1.

Definition 2. Let f: T—R and t € T*. Delta
derivative of f at t, denoted by f&(t), is
the real number (provided it exists) with the
property that given any ¢ there is a neighbor-
hood U = (t—-946,t+6)NT (for some § > 0)
such that

(F(e(®) = F() = F2 D (e (t) =) < elo(t) — s

for all s € U. Moreover, we say that f is delta
differentiable on TF provided f&(t) exists for
all t € T,



Remark 3.If T = R, then f : R—R is delta
differentiable at ¢t € R iff

s—t1 t— s

i.e. iff f is differentiable in the ordinary sense

at t.
If T=7%Z, then f:Z—R is always delta differ-

entiable at every t € Z with

oy = L) = FO ey L1y~ p
n(t)

Example 4. The delta derivative of t2 is t +

o(t).
. . 1 - -1
The delta-derivative of 7 1S Ok



Proposition 5. Assume that f,g . T—R are
delta-differentiable at t € TF and a € R. Then:

(f+ 2@ = fo) + g= @),
(af)2(t) = af=(b);
(FN2 () = F2)g®) + fo(#)g™ (1) =
= F(Dg> ) + F2 ) g(o(1));
(f)A ) = 1290 — FWg> ()
g g(t)g(o(t))
Proposition 6. Let g : R—R be differentiable

and f . T—R be delta differentiable. Then
go f is delta differentiable and fort e T

(92121 = [ o/ GO+hu(t) F2@)dn-1> (1),



A function f : T—R is called rd-continuous
provided it is continuous at right-dense points
in T and its left-sided limits exist (finite) at
left-dense points in T.

It can be shown that
f is continuous = f is rd-continuous.

A function F : T—R is called an antiderivative
of f : T—R provided F2(t) = f(¢) holds for
all t € Tk,

Cauchy integral is defined by

/f(t)At — F(s)— F(r) forall r.seT*

Remark 7.It can be shown that every rd-
continuous function has an antiderivative.



b b
Example 8.If T = R, then [ f(r)AT = [ f(7)dr,
a a
where the integral on the right is the usual
Riemann integral.

If T= 7, then ff(T)AT = bil f(t) for a < b.

t—=a

eSS

b ~1
If T=hZ, h >0, then [ f(r))AT =
a t:a’

f(Eh)h

>

for a < b.



Proposition 9.

b
[ rg”®at =

b
(fg)(b) — (fg)(a)—/fA(t)g(a(t))At.

If f is rd-continuous and t € T, then

o(t)
| FOAE) = n®i®).

t
If f(t) >0 for all a <t <b, then

b
[i@aE zo



Differential equations on time scales

An n x n matrix-valued function A on T is
called regressive with respect to T provided
I+ u(t)A(t) is invertible for all ¢t € T*.

The system of delta differential equations

22 () = Az (t)

is called regressive provided A is regressive.



Remark 10.If T = R, then any matrix-valued
function A on T satisfies the regressivity con-
dition. Then we get standard differential equa-
tions

2(t) = A(t)z(t).

If T = 7, then any matrix-valued function A
on T is rd-continuous. In order that A be
regressive, the matrix I + A(¢t) needs to be
invertible for each t € Z. Then we get

2(t+ 1) — x(t) = AQ)z(t)

or

z(t+1) = z(t) + AQ@)z(t) = (I + A(£))z(2).



Theorem 11. Let A be regressive and rd-
continuous n X n matrix-valued function on
T. Then the initial value problem

2 = A(t)z, x(tg) = x¢

has a unique solution x defined on T.

Let tg € T and let A be regressive and rd-
continuous n x n Mmatrix-valued function. The
unique matrix-valued solution of the initial
value problem X2 = A()X, X(ty) = I, is
called the matrix exponential function of A
(at tg). Its value at t € T will be denoted by

ea(t,to)



Remark 12. Let A be a constant n xn matrix.
If T=R, then e(t, tg) = eAt—to),

If T= 7% and I+ Aisinvertible, then e4(¢t,tg) =
(I + A)tt—to),

Remark 13.If A is not regressive we still have
unique forward solutions of
2 = A(t)z, x(tg) = g

defined for all t > tp.



Consider the nonhomogeneous equation

v = Az + f(1), z(to) =z0 (1)

where f : T—R" is a vector-valued rd-continuous
function, tg € T and zg € R".

Theorem 14. Let A be a rd-continuous re-
gressive n x n matrix-valued function on T.
Then the initial value problem (1) has a unique
solution on T, given by

t
2(t) = ealt,to)zo+ [ ealt, (M) (AT
to



Control systems on time scales
— selected examples

Controllability and observability

Consider a linear time-variant control system
with output

z2(t) = A(t)z(t) + B(t)u(t)

y(t) = C()x(t) + D(t)u(t) (2)
with the initial condition z(tg) = xg. We
assume that t € T, z(t) € R"*, u(t) € R™,
y(t) € RP and A, B,C, D are rd-continuous, A
IS regressive and controls u are piecewise rd-
continuous.

Notation: for tg,t1 € T, [to,t1] ={t €T : tg <
t <t}



We say that system (2) is controllable on
[to,t1] € T if any state z € R™ can be reached
from any other state starting at time tg and
finishing at time t1, using piecewise constant
controls.

Two states are indistinguishable on [tg,t1] if
trajectories starting at those points and cor-
responding to the same control give rise to
the same output on [tg,t1]. The systems is
observable on [tg,t1] if it does not have dis-
tinct states indistinguishable on [t¢g, t1].

Let us consider the Gramian controllability
matrix

3]

Wto,t1) = [ ealts,a(MBEBT (Dl (tr,0(1) A7
to



Theorem 15. The system (2) is controllable
on [to,t1] Iff the matrix W (tg,t1) is nonsingu-
lar.

Now let us consider the Gramian observability
matrix

t
M(to,t1) = [ €h(r to)CT(NC(Mea(r to) A

Theorem 16. The system (2) is observable
on [tg,t1] iff the matrix M (tg,t1) iS nonsingu-
lar.



Theorem 17. Let [tg,t1] contain at least n+
1 elements and A, B,C,D be constant matri-

ces. The system (2) is controllable on [tg, t1]
if and only if

rank(B, AB, ..., A" 1B) = n.
The system (2) is observable on [tg,t1] if and
only if
C

rank cA = n.

i



Dynamical equivalence

Assumptions: the time scale T is homoge-
neous, i.e. t+T :={t+s,s € T} =T for every
teT, and 0 € T.

Consider the following control system > de-
fined on T

z2(t) = f(=(t),u(t)), (3)
where t € T, z(t) € R", u(t) € R™ and f is a
map from R"™ x R™ into R"™. We assume that
f and u are of class C'°°.

A trajectory of 3 is any pair (x,u) of functions
defined on a subset of T that satisfy (3). The
behavior of 3, denoted by B(X), is the set of
all its trajectories.



Assumptions on the system 3_:
Condition A. For every z,y € R"™ there is at
most one uw that satisfies the equation

y = f(z,u). (4)

Condition B. For any z and u the rank of
the matrix

of

—(T,u

8u( )

is full (i.e. equal m).

Condition C. The map R" x R™M™—R" x R" :
(z,u) — (x, f(x,u)) is proper, i.e. the inverse
image of a compact set in R" x R"™ is a com-
pact set in R"™ x R™,



LLet us consider two systems

> 22(t) = fa(t),u(t))
and
S 720) = F(@@®), at))

with z(t) € R?, Z(t) € R", w(t),a(t) € R™,
defined on the same time scale T.

Consider dynamic feedback transformations
of one system into the other and vice versa

z(t) = ¢@E(®),...,7 (1)),
u(t) = P@E@),.... 70@), a0, ..., a1 @)
() = $x@t),..., =" (1)),

i(t) D), ..., 2@, u@),. .., u@))



We say that two systems X and > are dy-
namically feedback equivalent if there are dy-
namic feedback transformations that trans-
form the behavior of one system onto the
behavior of the second system and vice versa,
and these transformations are mutually in-
verse on the behaviors.

A nonlinear control system is dynamically feed-
back linearizable if it is dynamically feedback
equivalent to a linear controllable system.



Let J(m) denote the space of all infinite se-
quences U = (ug,u1,...), where up € R™. Let
A(n,m) denote the algebra of all C*° func-
tions

0 R" x J(m)—R

depending only on a finite number of ele-
ments in U € J(m). Let us now consider
a system X, described by (3). Define the op-
erator 6y : A(n,m)—A(n,m) associated with
2 by

(5290)(33 U) =
[ 22 (a4 his(0) £, u0), Ui - £z, o)+

Z/

(5)



The algebra A(n,m) together with the oper-
ator 6y is called the delta algebra of system
2. and denoted by As. A homomorphism of
delta algebras Ay and As is @ homomorphism
71 A(n,m)—A(n,m) of algebras that satisfies
the condition 6¢ o7 = 7 0o0x. AN isomor-
phism of the delta algebras As- and Ai IS a
homomorphism that is a bijective map.

Theorem 18. Systems >~ and >~ are dynam-
ically feedback equivalent if and only if their
delta algebras As- and Ai are isomorphic.



Remark 19.If the time scale is the real line,
then the delta algebra of the system becomes
the differential algebra of the continuous-time
system (Jakubczyk, 1993). On the other
hand, if the time scale is the set of integer
numbers, then the delta algebra of the sys-
tem is related to the difference algebra of the
discrete-time system (Bartosiewicz, Jakubczyk,
Pawtuszewicz, 1994).



Stability of linear systems on homoge-
neous time scales

Consider the system
> = Az (6)

where T =R or T = hZ and A is nxn constant
matrix.

System (6) is asymptotically stable if for any
initial condition the solution goes to O when
t— 4 0.

Proposition 20. System (6) is asymptotically
stable if and only if all eigenvalues of A lie in
the open disc with the center at _Tl and the
radius +. For T =R take the limit with h—0.



-1/h Re z




Concluding remarks

e [ime scale is a model of time. Time may
be continuous, discrete or mixed.

e Calculus on time scales unifies differential
and difference calculus. Differential equa-
tions and difference equations are particu-
lar cases of differential equations on time
scales.

e Control theory on time scales unifies the-
ories of continuous-time systems and discrete-
time systems, and allows to study systems
with mixed time.



e Virtually any topic in control theory may
be rewritten in the language of time scales.

e Systems on double time scales may al-
low to model hybrid systems, where some
variables depend on continuous time and
other on discrete time.



