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Two Inverse Quadratic Eigenvalue Problems

[. Quadratic Partial Eigenvalue Assignment Problem

(QPEVAP)

Controlling Dangerous Vibrations
in Structures

—

QPEVAP




I1. Finite Element Model Updating Problem (FEMUP).

Updating Theoretical FEM Using
Measured Data from Real-Life
Structure

— 4

FEMUP Structure preserving

QPESAP




The Quadratic Eigenvalue Problem:

(MM + XD+ K)z =0

e 2n eigenvalues and 2n corresponding eigenvectors.

e The eigenvalues are the roots of the quadratic pencil

det(\*M + AD + K) = 0.

e Quadratic Matrix Pencil
P\ =XNM+ D+ K

Generalization of Standard Eigenvalue Prob-
lem

Ar = \x

and
the Generalized Eigenvalue Problem

Ax = \Bzx.



Approach 1

e Reduction to a Standard 2n x 2n Eigenvalue Problem

Au = \u
where
0 I
A =
—M 'K —M~'D

~(2)

(Assuming that M is nonsingular)

e The eigenvalues are the same

e The eigenvectors are extracted from the eigenvectors
u.



Numerical Difficulties

e M is ill-conditioned.

e Special structural properties: definiteness, sparsity,
bandness, etc. destroyed.



® Reduction to a Generalized Eigenvalue Problem:

Symmetric Generalized Eigenvalue Problem

Bz =)Cz

D K
'B:<Ko )
—M 0
'C:< 0 K)



Numerical Difficulties

The pencil Bz = ACz is symmetric, but in general in-
definite, even though M, K, and D are symmetric pos-
itive definite.

Remark: The QEP is nonlinear eigenvalue prob-
lem - difficult to solve.



State - of the - Art Methods.

e A Look-ahead Lanczos Algorithm of Parlett
and Chen (1980) (only a few extremal eigenvalues).

e The Jacobi-Davidson Method (Projection Method).

Only a few extremal eigenvalues and eigenvectors com-
puted.
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Applications of the QEP.

e Vibration Analysis of Structural Mechanical and Acous-
tic Systems

e Electrical Circuit Simulation
e Fluids Mechanics
e Modeling Microelectronic

e Finite-Element Model Updating in Aerospace and Au-
tomobile Industries.
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Quadratic Inverse Eigenvalue Problems.

e Certain inverse eigenvalue problems for the quadratic
pencil arising in practical applications can be handled
with a small number of eigenvalues and eigenvectors,
if done properly.
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Examples of Resonance

Dangerous vibrations such as resonance are caused by
a few bad eigenvalues.

Classical Examples of Resonance:

e The Fall of the Tacoma Bridge
e The Fall of the Broughton Bridge in England

e Wobbling of the Millennium Bridge over the River
Thames in London, England

(www.arup.com/Millenniumbridge)
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Phenomenon of Resonance

e The Discretized Finite Element Model
Mi(t) + Dz(t) + Kz(t) = 0.

e The Associated Quadratic Matrix Eigenvalue
Problem:

(MM +AD + K)x = 0.

e The dynamics are governed by

Natural Frequencies — Eigenvalues of the QEP.

Mode Shapes = Eigenvectors of the QEP.
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Response of a Structure due
to Harmonic Input

i =),

L d f (t) = External Force = fo eJwt
e Oscillatory Solution z(t) = z(t)e’*!
o (K + jwD — w*M)ze*t = f,el*

oz = (K +jwD —w*’M)'f, (Response).

As
Jw — /\j

||P(jw) || increases without bound.

e Resonance is caused by closed proximity of an external
frequency to that of a natural frequency.
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How to Avoid Resonance?

e Feedback Control can be used
Idea: Replace {computed Unwanted eigenvalues}
— {suitably chosen ones}

and
Leave the remaining large number unchanged.

(No spill-over)
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Feedback Control in Second-order Model

A possible Remedy: Apply a suitable control force to
the structure. Use the technique of feedback control.

e Matrix Second-order Model with Control
Mi(t) + Dz(t) + Kz(t) = Bu(t)

B - Control Matrix
u(t) - Control Vector
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e Second-order Feedback Closed-loop System
Choose u(t) = Fiz(t) + Fhz(t).

Mi(t) + Di(t) + Ka(t) = B(Fia(t) + Fox(t))

The associated matrix quadratic pencil:

e P(\)=NM + \(D—BF)+ (K — BF;) = 0.

This pencil is called the closed-loop pencil.

19



Notations

e The spectrum of the quadratic pencil:

Q(P()\)) = {)\1, ceey )‘pa )‘p—|—17 ceoy )\2n}

e The right eigenvectors of the:

{ZCl, ceny Llfp; ZUp_|-1, ceny .legn}
e The left eigenvectors of the pencil:

{yh s Jyp; yp+1 S 7y2n}-

20



Quadratic Partial Eigenvalue Assignment
Problem (QPEVAP)

Given

e The system matrices M, K, D, € R"™"(M = M* >
0, K=K!'>0and D= D").

e A control matrix B € R**™

Find the Feedback Matrices F} and F5 such that
Q(PC<>\)) — {ILLl, ooy Hpy )‘p—l—la ce ,)\Qn}.

e {Unwanted Eigenvalues} — {User’s Chosen Eigen-
values}

e {Good FEigenvalues} = {Remain Unchanged}
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Stabilizing a Second-order System

(A Special Case)

e Solution of the QPEVA problem can be used to sta-
bilize a matrix second-order system by feedback.
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Two Standard Approaches for Control

e Solution via transformation to a first-order State-
Space Form

e Independent Modal Space Control (IMSC)
Approach.

Both these approaches have severe computational
difficulties and engineering limitations.
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Approach I
Standard First-order Reduction

Recall the second-order feedback control system
Mi(t)+ (D — BFy)x(t) + (K — BFy)z(t) = 0.
e Reduction to Standard First-order State-space Form:

0= (_yfag _aap )10+ (4l ) ute

Opportunities

e Many numerically excellent methods can be used
(Numerical Methods for Linear Control Sys-
tems Design and Analysis, by B.N. Datta, El-
sevier Academic Press, 2003)
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Difficulties

e [ll-conditioned matrix inversion might be necessary.

e All important structures such as sparsity, definite-
ness and bandness etc. are lost.

e Problem size becomes double.

25



Non-standard first-order reduction:

<_0K ]&)zu): <_OK :g)z(tH (%)u(t)

E3(t) = Az(t) + Bu(t) (Descriptor System)

or

e Numerical methods for descriptor systems not well-
developed (E could be singular or very ill-conditioned)

e Symmetry preserved, but not Positive Definiteness,
Spartity and other Properties.
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Approach II
Independent Space Control (IMSC)
Approach.

(For Open-loop Decoupling)

e Requires complete knowledge of the spectrum and
eigenvectors of the open-loop pencil

P(\) =AM +AD + K.

Impractical for large and sparse problems
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(For closed-loop Decoupling)

BKM™'D =DM 'BK

BKM™ K = KM~ 'BK

e Stringent requirements need to be satisfied on actu-
ators and sensors which are impossible to satisty in
practice.

Ref: Vibration with Control, Measurement, and
Stability by D. Inman, Prentice Hall, 1989.
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Challenges

e Use a small number of eigenvalues and eigen-
vectors that can be computed or measured.

e No transformation to a first-order system.

e No reduction of the order of the model or the
order of the controllers.

e Mathematical guarantee needed for the no spill-
over property.
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The Current Engineering Practice and
Drawbacks

e Compute and control the first few frequencies and
mode shapes (eigenvalues and eigenvectors).

e Hope that the large number of remaining eigenvalues
and eigenvectors do not chan ge or do not spill-over
to dangerous regions.

e Unfortunately, the spill-over almost always
occurs.

e No mathematical basis

30



Recent Direct and Partial-Modal Approach
for Feedback Control

(Collaborative work with Eric Chu, Sylvan Elhay,
Yitshak Ram, Daniil Sarkissian, W.W. Lin,
J.N. Wang, and others)

e Direct - No transformation required.

e Partial-Modal - Only knowledge of a small number
of eigenvalues and eigenvectors needed for implemen-
tation.

e [Extension to the Robust Partial Eigenvalue As-
signment. (Sensitivity minimization by minimiza-
tion of the eigenvector condition number and feed-
back normly)
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A New Approach for the Quadratic Partial
Eigenvalue Assignment Problem

e T'wo-part solution

Part I. No spill-over part (with a parametric
matrix).

Part II. Partial Eigenvalue Assignment Part.
(with a special choice of the parametric matrix)
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Notations

Define A; = diag (A1,..., )
Yi= (y17y27'°'7yp)
Na = diag (py, ..., tp).
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Solution of Part I

Theorem on No Spill-over

e Choose any arbitrary parametric matrix ¢

e Define
FL=oY"M

and

Fy=oMNYY M + YD)
Then

QAN MAND—BF)+(K—BFy)) = {#% %, Apt1, - - -, Aan}
No Change.

Note: Only small number of eigenvalues needed for con-
structing F7 and Fs.
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New Orthogonality Results on the
Eigenvectors of the Quadratic Matrix Pencil

Assume

{)\17 U 7>\p} M {>\p+17 U 7)\271}) — ¢
Partition A = diag (A, As)

X = (X1, Xo)
Y = (Y1,Y2)

Then
0A1Y1HMX2A2 — }/leKXQ =0

and

oM\ YHEMXy + YEMXoMy + YEDX, = 0.
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Generalization of Orthogonality Results of
SEVP and SDGEVP

e X7 AX = Diagonal (Symmetric EVP)

XTAX = Diagonal

® VTRY — T Symmetric Definite GEVP
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Solution of Part II (How to Choose $7)

37



Theorem on Partial Eigenvalue Assignment

e Let I' be an aribitray parametrix matrix. Let Z; be a
unique solution of the p x p Sylvester equation.

MZy — ZiAg = Y BT

and ® be determined by solving
e the p X p linear system ®Z; =T

e Then Result:
QN’M + XD — BF,) + (K — BF,)) =

{pa, - pp; Apt1s- -5 Aan}
Desiresed EVS No Change
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An Algorithm for QPEVAP

Step 1. Form

® Al — diag()\l, ce ,)\p)
.}/1: (y17"°7yp)
o N\ = diag(ua, ..., ).

Step 2. Choose arbitrary m x 1 vectors 71,...,7, in such a

way that 7i; = py implies 7; = v, and form
U= (71,5 %)
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Step 3. Find the unique solution Z; of the p X p Sylvester
equation

MZ, — ZiAg = Y BT.

If Z; is ill-conditioned, then return to Step 2 and select
different vy, ..., 7,.
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Step 4. Solve &7 =1 for O.

Step 5. Form F; = &Y and Fy, = d(\ Y M + Y D).

e Standard Numerical Methods for Solving Sylvester
and Lyapunov Equations

e Numerical Methods for Linear Control Systems

(Chapter 8).

41



Computing Resources and Requirements for
Implementations

e A small number of eigenvalues and eigenvectors
e Solution of a small Sylvester equation

e Solution of a small linear algebraic system
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Practical and Computational Features

e Applicable to even very large real-life structures
e No transformation or model reduction

e Suitable for high-performance computing
(Rich in BLAS-3 Computations.)

e Sparsity, bandness, symmetry, etc. can be exploited
e Mathematical guarantee of no spill-over

e [ixtension to more general problem of both partial
eigenvalue and eigenvector assignment (QPESA)

e Generalization to the Partial Eigenvalue Assignment
in DPS. (Infinite Dimensions).
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Quadratic Partial Eigenstructure Assignment
Problem (QPEASP)

Given

e The system matrices M, K, D, e R™™*(M = M >
0, K=K">0and D= D)

e A set of computed unwanted eigenvalues { Ay, ..., A, }.

o A set of user’s chosen eigenvalues {u1, ..., pp }.

o A set of user’s chosen eigenvectors {1, ..., Ze}

Find the Feedback Matrices F} and F5 and a control
matrix B such that

Q(Pc()\)) = {,LLl, ooy Up, )\p—i—la « o ,)\Qn}.

The Eigenvectors of p.(A) ={za, .-, Tep; Tpi1, Ton -

{Unwanted FEigenvalues and Eigenvectors} — {User’s
Chosen Eigenvalues and Eigenvectors}

{Remaining Eigenvalues and Eigenvectors — No Change. }
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An Algorithm for QPESA
Step 1. Form A; = diag(\,..., \p),

Yl: (yh"')yp)a

Ag = diag(p, ..., 4p), and (Xg, ..., Zep).

Step 2. Form the matrix
Z1 = A1Y1HMXC1 + YlHMXclAcl + YlHCXcl-
Stop it Z7 is singular and conclude that the eigenstruc-

ture assignment with the given sets of eigenvalues and
eigenvectors is not possible.
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Step 3. Form the matrix T, such that T, A, T CH 1S a real
matrix.

Step 4. Form

B = (MXClAgl —+ CXclAcl + KXCl)TcH7
Fy=T,Z7'Y M, and
By =T.Z7 (MY M + YHCO)

by solving the appropriate linear systems.

e There also exists a parametric Algorithm (as that of

QPEVA)

(Ph.D Thesis by Daniil Sarkissian, Northern Illi-
nois University, 2001).
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Natural Mathematical Model

Distributed Parameter Systems

!
!
FEM
!
!

Discretized Finite Element Model
System of Second-order ODE.
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e Distributed Parameter Systems Model (DPS)

Distributed Parameter Systems:
0*v(t, ) ov(t,x)
Ot? ot
M,C, and K are differential operators in the z-

domain (spatial domain) of the displacement function
v(t, x).

M (x) + C(z) + K(x)v(t,xz) = 0.

v(t, ) belongs to some Hilbert space.

M = Mass operator (Self Adjoint)

K = Stiffness operator (Self Adjoint)
C=D+0G

D = Damping operator

G = Gyroscopic operator (Skew Symmetric)
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DPS problems are infinite dimensional.
Two Additional Fundamental Challenges

e Use finite dimensional control and computational tech-
niques

e Guarantee the invariance of the finite spectrum math-
ematically.

49



Mathematical Statement of the PEVA in DPS

Given

e The operators M, C, and K, of the DPS
o A self conjugate set of numbers {p1, ..., 1y}

e Suitable control functions by, ..., b,.

Find Real Feedback Functions fi1,..., fi,, and
fa1, . .., fom such that

QP.(N)g) = XM+ MNC¢ — > (fir, D)1)

m k=1 (1)
+HKp—> (for, D))

k=1

is the set S = {p1, -+, tp; Apr1, Apra, -+ )

20



ITI. Partial Eigenvalue Assignment (PEVA)
in Distributed Parameter Systems

Reassign a small part of the infinite open-loop spectrum
of the operator pencil P(\) = \>M + AC + K, by using
teedback such that

i. the set is replaced by a suitable chosen set

ii. the remaining infinitely many eigenvalues do not change

{Al,...,)\p}:>{,u1,...,up}

{)\p_|_1, .. } — {)\p_|_1, .. }
No Change

o1



Theorem (Parametric Solution to the Partial Eigen-
value Assignment Problem for a Quadratic Op-
erator Pencil).

Part (i) (No-spill-over Part).
Choose ®y; arbitrarily and define

p
Jik = Z i M*v;

7=l

p
f2k = Z (T)kj(S\jM*’Uj -+ C*Uj),
j=1

Result:
Then the infinite part of the spectrum {1, ......}
of P(\) will remain unchanged.
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Part (ii) (Assignment Part).

e Solve the Sylvester equation:

(Ul,.bl) (Ul,bm)

A1Z1 — ZlAcl = :
(Vp, b1) -.. (Vp, by)
e Compute
&z, =T,
Result:

Q(Pcl()\)) — {,LLl, ey My )‘p-l-la ceny }

93



Algorithm. (Parametric Solution to the Partial
Eigenvalue Assignment Problem in Distributed
Parameter System)

Inputs:

(a) The differential operators M, C', and K of the
open-loop pencil P(A).

(b) The m control functions by, ..., by,.

(c) The set of scalars {1, ..., 4y }, closed under complex
conjugation.

(d) The self-conjugate subset {A1, ..., A,} of the open -
loop spectrum {A1, Ao, ...} and the associated eigen-
function set {vy, ..., v,}.

Outputs:
The feedback functions fi,..., f,, and fo1, ..., fo,, such

that the spectrum of the closed-loop operator pencil is
the set {1, .- p; Apt1, Apta, .-}

o4



Assumptions:

e The control functions by, ..., b,, are linearly indepen-
dent.

e The open-loop quadratic operator pencil P(\) = A\2M+
AC + K with control functions by, ..., b, is partially
controllable with respect to the eigenvalues Ay, ..., Ap,.

o Thesets{ A1, ..., \p}, {Apt1, Apsa, -} and { g, -, iy }
are disjoint.

e The open-loop operator pencil P(A) has a discrete
spectrum without finite accumulation points,
every eigenvalue is Semi-simple, and the system of
eigenfunctions of P()) is two-fold complete.

(Large Body of Literature on Spectral Theory of
Operators).
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Step 1. Form A; = diag (A1,...,\y) and A,y = diag
(K1 ey Hip)-

Step 2. Choose arbitrary m x 1 vectors vy, ...,7, In
such a way that @; = pp implies 7; = 7 and form

= (71,00 Yp)-

Step 3. Solve the m x m Sylvester equation for Z;:

(’Ul,bl) (Ul,bm)
A121 — ZlAcl = : : I

(Vp, b1) .. (Up, byy)

If Z; is ill-conditioned, then return to Step 2 and select
different Aq, ..., Ap.

Step 4. Solve the m X m linear system: ®7; = I for
¢ = (Cbz'j)-

26



Step 5. If none of the Ay,..., A, is zero, form for all
Ek=1,....m

p
Jik = Z Gbij*’Uj, and
j=1
p

Jor = — Z@kj/j\j)K*Uja

j=1

otherwise, form for all k =1, ..., m,

b
fik = Z dr;M*v;, and

g=1

p
f2k = Z éw(j\jM*Uj —+ C*’Uj>.
j=1
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Distinguished Practical Features

e Only a small finite part of the infinite spectrum (and
the associated eigenfunctions) needed to numerically
implement the algorithm.

e Mathematical guarantee of no spill-over.

e An infinite-dimensional control problem solved using
finite-dimensional control and numerically viable fi-
nite computational techniques.

e The algorithm is parametric in nature. This prop-
erty can be exploited in designing a numerically
robust feedback control.
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Case Study With Finite Dimensional Problem

Vibration of Rotating Axel in a Power Plant
Mathematical Model: P(\) = M +AD + K

o M = diag (mq1,ma, ..., my).

e ) = Symmetric tridiagonal

e K = Symmetric tridiagonal
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Set Yo = Y =Ko = Ky, =0

D = (d;;), where d;; = 4 Yie1 + 0 + Vi =]
—; ) 7’:]—|—1
L 0 , otherwise
and
(_K’Z' ) 7’—|_]-:]
— (f.. L _ ) Ri-it R, 1=
K = (ki;), where k;; = < ks it

0 , otherwise
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A Benchmark Example
n =111
e The open-loop Eigenvalues (222 Eigenvalues)

A = —1.3734 x 107°

(The Most Unstable Eigenvalue)

R.()\;) < —0.016267, j = 2,3,...,422.
(Better Stability Property)

The largest contribution to the shape of the transient
response 1s generated by the eigenvectors correspond-
ing to \i.
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A = p; = —0.016 (vibration will be suppressed 10°
fold)

— 1 (1,1 1
x — (L, 1,..., = 1.
T A Y1
The control matrix
T
10---0
B =
0 O 1

[' = parametric matrix

= (—0.51454, —0.85747)".
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Experimental Results

e \; was assigned to p; accurately

e r; was assigned to y; accurately

e 2-Norm difference between the open-loop and closed-
loop eigenvalue is about 1.7 x 107°

o |[F1|] <116, [|F2]| <22

, Al
< 0.57 and ———=
"Dl 11K] 2

(Small Feedback Norms Desirable for
Robustness)
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Conclusion

The Vibrations of the rotating turbine axel are suppressed
nearly 10° - fold by using small feedback control forces

generated by the Algorithm.
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Finite Element Model Updating Problem:

Given

1. The finite element generated symmetric matrices M, K,
and D:

M=M">0, K=K">0and D= D!

2. A set of measured eigenvalues {1, ..., 4y} and the
eigenvectors {y, ..., Yn} from a real-life structure.
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Find the updated symmetric updates M, K, and D
such that

e F'EM Eigenvalues — Measured Eigenvalues
e F'EM Eigenvectors — Measured Eigenvectors

e Remaining Figenvalues and Eigenvectors = No Change.
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Finite Element Model Updating (FEMU)

Finite Element Model
ANSYS, NASTRAN
M=MT>0 ’ X
K=KT>0
D =DT
{1, A} and {z1, ..., 2y}
Natural Frequencies Mode Shapes
(Eigenvalues) (Eigenvectors)

Real-Life Structure
Automobile
Boeing 777

~

{u1, ..., py and {y1, .-, yp}

Measured Measured
Eigenvalues Eigenvectors
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FEMU: M — M = (M)" = M + AM (Symmetric)

~

K — K = (K)" = K + AK (Symmetric)
D — D = (D)T = D+ AD (Symmetric)
{)\1, cers >\p} — {,ul, cery ,up}

{z1, .., zp} — {y1, -, Yp}
{Aps1s ooy Ao} = {1, -y A2} (No Change)

{zps1, ., xon} — {2pt1, ..., 22} (No Change)
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Difficulties

e Finite-Element Models of very High-order.

Model Size Needs to be Reduced (Model Reduc-
tion)

e Difficult to check no spill-over property com-
putationally or Experimentally.

e Incomplete Measured Data.

(Hard-wire Limitation)

Analytical Eigenvectors of Full-Length
Vs

Short Measured Eigenvectors.

Missing Entries Need to be Supplied.

e Complex Data

Real Finite Element Data
Vs

Complex Measured Data From Real-life Structures.
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Challenges

e Problem should be solved without Model Reduc-
tion or reduction to condensed forms.

e Algorithms should be able to cope up with Incom-
plete Measured and Complex Data

e No spill-over phenomenon to be guaranteed mathe-
matically.

e Algorithms should use only the available small sub-
set of the eigenvalues and eigenvectors of the
quadratic pencil, and the measured data.
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The Current Status of the Problem

e The problem well-studied and still very much active
work going on in Vibrating Industries

e Several hundred papers and a book (Finite Ele-
ment Model Updating in Structural Dynam-
ics by M.I. Friswell and J.E. Mottershead, 1995).

e Many Adhoc solutions by Industries (sometimes Not
Based on Sound Mathematical Reasoning)

e Problem Not Solved in desirable way
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Existing Techniques of Model Updating
and
Drawbacks

e The so-called optimization-based Direct Methods
deal with Linear model:

P(A) =AM - K
rather than the Quadratic Model:

Po(\) =M+ D+ K.

e Can not guarantee the no spill-over prop-
erty.
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“The updated mass and stiffness matrices have [it-
tle physical meaning and can to be related to physi-

cal changes to the finite-element model in the original
model,” Friswell and Mottershead.
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Most Recent Developments

e (B.N. Datta) Finite Element Model Updating, Figen-
structure Assignment, and Eigenvalue Embedding
for Vibrating Systems, J. Mechanical Vibration and

Signal Processing (2003).

e Ph.D Thesis of Joao Carvalho, NIU 2002.
(The State-of-the-Art-Result on FEMU)

e Symmetric Eigenvalue Embedding Approach
(Carvalho, B.N. Datta, W.W. Lin and J.N. Wang)

Available at the website:

www.math.niu.edu/~dattab
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Finite-Element Model Updating in
Undamped Model

(Carvalho ’2002).

e The problem Completely Solved in the case of
Undamped Model

e The difficulties with incomplete measured data re-
solved in the algorithm itself.
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PART I (Updating of K with No Spill-over)

A = The Finite Element Matrix of Eigenvalues.
X = The Finite Element Matrix of Eigenvectors.

Partition

A = diag(Ag, Ag) :

Ay = diag{A,..., \p}

Ay = diag{Aps1,. .., Aon}

X =(X1,Xo): Xy ={z1,..., 2}, Xo ={xps1,. .., Ton}.
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Theorem

Let )
K=K-MX\®X{M

Then if ® is a symmetric matrix,
(1) K is a symmetric matrix
and

(1) MXoAy+ KXo =0

—> No Spill-over.
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PART ITI (Assignment of Measured Data)

>, = The Matrix of Measured Eigenvalues

Y = Matrix of Measured Eigenvectors

Theorem Let ® satisty the Sylvester matrix equation:

YIMX)®(YIMX,) =YIMYY + Y KY.

e Then @ is symmetric

oQ(/\2M K ) = { Measured eigenvalues; A\, ..., Ao, }

eEigenvectors of (A\2M + K) : {Measured eigenvectors;
Tp+1--- ,il?gn}.
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Notes: Y7 = Measured Eigenvector Matrix

= Not Completely Known

~( Y11 «— Known
~ \ Y} +— Unknown

e The unknown part is computed appropriately by the
Algorithm.
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Model Updating of an Undamped Symmetric Positive
Semidefinite Model Using Incomplete Measured Data

Input: The symmetric matrices M, K € R" " the
set of m analytical frequencies and mode shapes to be
updated; the complete set of m measured frequencies and
model shapes from the vibration test.

Output: Updated stiffness matrix K.
Assumption: M = M* >0and K = K1 > 0.

Step 1: Form the matrices Z% e R™™ and Y7 €
R™™ from the available data. form the corresponding
matrices A7 € R™™ and X; € R™™,

Step 2: Compute the matrices Uy € R™™, U, €
R*(=m) and Z € R™™ from the QR factorization:

Mm:mwﬂﬂ

Step 3: Partition M = [M; M,|, K = [K; K| where
My, K, € Rrxm
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Step 4: Solve the following matrix equation to
obtain Yjy € R—m)xm.

U2T]W2Y12Z + U2TK2Y12 = —UQT [K1Y11 + MiY11Y)

and form the matrix
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Theorem on Symmetry Preserving Partial
Eigenvalue Assignment

Let (\1,y1) be an unwanted real isolated eigenpair of
P(A) = M>M + AD + K with yi Ky, = 1. Let )\ be
reassigned to p1. Define 61 = yi My, and assume that
1 — )\1/11(91 7é 0 and 1 — )\%91 7é 0.

e (A1, Y1) - An Unwanted Isolated Real Eigenpair

®0,= 3/1TMY1
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e Updated model Py (2) = 2*My + A\Dy + Ky

1s such
My =M — €1A1Myly?M

Dy = D+ ea(Myy{ K + Ky1yi M)
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i. The eigenvalues of Py(\) the same as those of P(\)
except that Ay replaced by p;.

ii. y; also an eigenvector of Py(\) corresponding to the
embedded eigenvalue ;.

iii. If (Ao, y2) an eigenpair of P(\), where Ay # A1, then
(A2, y2) also an eigenpair of Py ().
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Conclusions

e Some very interesting (but very difficult) Struc-
tured Inverse Eigenvalue Problems arising in
practical Industrial Applications.

e Real-life applicable and mathematically sound
solutions.

e Many existing industrial techniques are ad-hoc in
nature. Not much consideration for mathematical
difficulties and challenges.

e Very often lacks strong mathematics foundations.
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e Industries in Japan and Germany take more math-
ematical approach to industrial problems.

e Need people with industrial aptitude and inter-
disciplinary training blending Linear Algebra,
Numerical Linear Algebra, and Scientific Comput-
ing with areas of engineering such as Mechanical
and FElectrical Engineering. Such expertise are
rare.

e Curricular in both Engineering, Mathematics
and Computer Science need to be re-looked into
for opportunities for interdisciplinary courses.

e Many engineering text books need to be rewrit-
ten incorporating recent developments in matrix com-
putations, scientific computing and mathe-
matical software.
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